EXPERIMENTAL STUDY ON INFLUENCE OF TURBINE SETTING ELEVATION ON WAKE CHARACTERISTICS OF TIDAL TURBINE

Zhao Mengshang, Zhang Yuquan, Zheng Yuan, Yang Chunxia, Zhang Zhi, Tang Qinghong

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (4) : 486-492.

PDF(2619 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2619 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (4) : 486-492. DOI: 10.19912/j.0254-0096.tynxb.2020-0709
Topics on Key Technologies for Safety of Electrochemical Energy Storage Systems and Echelon Utilization of Decommissioned Power Batteries

EXPERIMENTAL STUDY ON INFLUENCE OF TURBINE SETTING ELEVATION ON WAKE CHARACTERISTICS OF TIDAL TURBINE

  • Zhao Mengshang1, Zhang Yuquan2, Zheng Yuan2, Yang Chunxia2, Zhang Zhi1, Tang Qinghong1
Author information +
History +

Abstract

In order to research the different wake characteristics of tidal turbine at different setting elevations, the velocity was measured by Acoustic Doppler Velocimeter (ADV) and the different wake characteristics were compared, the general wake distribution regulation were revealed at different working conditions. The results indicate that the recovery rate of velocity deficit is gradually increase, however the recovery rate of turbulence intensity and Reynolds shear stress gradually decrease as the growth of the turbine setting elevation. The different wake characteristics are nearly symmetrical along the center line of the runner at the transverse flow field, the wake velocity drift to the free surface at the longitudinal profile, while the turbulence intensity and Reynolds shear stress do not perform distinct same behavior. The different turbine setting elevations mainly affect the wake recovery rate at the downstream, however perform little influence on the wake characteristics along the depth and horizon. The support structure only perform a postive effect on the wake characteristics within 1.5D at the near wake, while perform a negative effect at the far wake.

Key words

turbines setting elevation / tidal power / wake characteristics / Reynolds shear stress / model experiment

Cite this article

Download Citations
Zhao Mengshang, Zhang Yuquan, Zheng Yuan, Yang Chunxia, Zhang Zhi, Tang Qinghong. EXPERIMENTAL STUDY ON INFLUENCE OF TURBINE SETTING ELEVATION ON WAKE CHARACTERISTICS OF TIDAL TURBINE[J]. Acta Energiae Solaris Sinica. 2022, 43(4): 486-492 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0709

References

[1] LEWIS M, NEILL S P, ROBINS P E, et al. Resource assessment for future generations of tidal-stream energy arrays[J]. Energy, 2015, 83: 403-415.
[2] 袁鹏, 陈超, 王树杰, 等. 潮流能水平轴水轮机翼型几何参数对其转捩特性的影响研究[J]. 太阳能学报, 2020, 41(6):156-163.
YUAN P, CHEN C, WANG S J, et al. Study on influence of geometric parameters on transition characteristics of tidal turbine hydrofoil[J]. Acta energiae solaris sinica, 2020, 41(6): 156-163.
[3] 张亮, 尚景宏, 张之阳, 等. 潮流能研究现状2015-水动力学[J]. 水力发电学, 2016, 35(2): 1-15.
ZHANG L, SHANG J H, ZHANG Z Y, et al. Tidal current energy update 2015-Hydrodynamics[J]. Journal of hydroelectric engineering, 2016, 35(2): 1-15.
[4] 郑源, 李东阔, 张玉全, 等. 单桩结构的潮流能水轮机尾流流场分析[J]. 太阳能学报, 2019, 40(11): 3031-3038.
ZHENG Y, LI D K, ZHANG Y Q, et al. Study on wake effect of horizontal axis marine current[J]. Acta energiae solaris sinica, 2019, 40(11): 3031-3038.
[5] 陈娅玲.潮流水轮机及阵列对周边流场影响研究[D]. 北京: 清华大学, 2015.
CHEN Y L.Study on the effects of tidal turbine and array on the flow field[D]. Beijing: Tsinghua University, 2015.
[6] CHEN Y L, LIN B L, LIN J, et al. Experimental study of wake structure behind a horizontal axis tidal stream turbine[J]. Applied energy, 2017, 196: 82-96.
[7] MYERS L E, BAHAJ A S Experimental analysis of the flow field around horizontal axis tidal turbines by use of scale mesh disk rotor simulators[J]. Ocean engineering, 2010, 37(2-3): 218-227.
[8] MYCEK P, GAURIER B, GERMAIN G, et al. Experimental study of the turbulence intensity effects on marine current turbines behaviour.Part I: one single turbine[J]. Renewable energy, 2014, 66: 729-746.
[9] MYCEK P, GAURIER B, GERMAIN G, et al. Experimental study of the turbulence intensity effects on marine current turbines behaviour.Part II: two interacting turbines[J]. Renewable energy, 2014, 68: 876-892.
[10] MYERS L E, BAHAJ A S, RAWLINSON-SMITH R I, et al. The effect of boundary proximity upon the wake structure of horizontal axis marine current turbines[C]//ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering, 2008: 709-719.
[11] 张继生, 张婧, 王日升, 等. 波流共同作用下水平轴潮流能水轮机水动力特性[J]. 河海大学学报(自然科学版), 2019, 47(2): 175-182.
ZHANG J S, ZHANG J, WANG R S, et al. Investigation on the hydrodynamics around a tidal stream turbine of horizontal axis under the combined action of wave and current[J]. Journal of Hohai University(natural sciences), 2019, 47(2): 175-182.
[12] ZANG W, ZHENG Y, ZHANG Y Q, et al. Experiments on the mean and integral characteristics of tidal turbine wake in the linear waves propagating with the current[J]. Ocean engineering, 2019, 173: 1-11.
[13] WANG S Q, CUI J, YE R C, et al. Study of the hydrodynamic performance prediction method for a horizontal-axis tidal current turbine with coupled rotation and surging motion[J]. Renewable energy, 2019, 135:313-325.
[14] WANG S Q, SUN K, XU G, et al. Hydrodynamic analysis of horizontal-axis tidal current turbine with rolling and surging coupled motions[J]. Renewable energy, 2017, 102: 87-97.
[15] WANG S Q, XU G, ZHU R Q, et al. Hydrodynamic analysis of vertical-axis tidal current turbine with surging and yawing coupled motions[J]. Ocean engineering, 2018, 155: 42-54.
[16] CHEN Y L, LIN B L, LIN J J C, et al. Modelling tidal current energy extraction in large area using a three-dimensional estuary model[J]. Computers & geosciences, 2014, 72: 76-83.
[17] CHEN Y L, LIN B L, SUN J, et al. Hydrodynamic effects of the ratio of rotor diameter to water depth: an experimental study[J]. Renewable energy, 2019, 136(6): 331-341.
[18] 张玉全, 赵梦晌, 郑源, 等. 不同湍流强度下潮流能水轮机尾流特性试验研究[J]. 中国电机工程学报, 2020, 40(15): 4902-4909.
ZHANG Y Q, ZHAO M S, ZHENG Y, et al. Experimental study of different turbulence intensities on the wake characteristics of tidal turbines[J]. Proceedings of the CSEE, 2020, 40(15): 4902-4909.
[19] 张德胜, 陈健, 石磊, 等. 雷诺数修正的潮流能水轮机水动力特性算法完善[J]. 太阳能学报, 2018, 39(5): 1195-1202.
ZHANG D S, CHEN J, SHI L, et al. Hydrodynamic performance prediction of tidal current turbine based on correction of local reynolds number[J]. Acta energiae solaris sinica, 2018, 39(5): 1195-1202.
PDF(2619 KB)

Accesses

Citation

Detail

Sections
Recommended

/