A FAULT DIAGNOSIS METHOD FOR PHOTOVOLTAIC ARRAY VIA BOA-SAE-EELM

Chen Shiqun, Yang Gengjie, Gao Wei

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (4) : 154-161.

PDF(2760 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2760 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (4) : 154-161. DOI: 10.19912/j.0254-0096.tynxb.2020-0763
Topics on Key Technologies for Safety of Electrochemical Energy Storage Systems and Echelon Utilization of Decommissioned Power Batteries

A FAULT DIAGNOSIS METHOD FOR PHOTOVOLTAIC ARRAY VIA BOA-SAE-EELM

  • Chen Shiqun, Yang Gengjie, Gao Wei
Author information +
History +

Abstract

The nonlinear characteristics of the output of the photovoltaic(PV) array and the maximum power point tracking algorithm will affect the operation of PV array protection equipment. In order to identify correctly the operating status of PV array, a novel fault diagnosis method that combines Bayesian optimization algorithm(BOA), stacked autoencoder(SAE), and ensemble extreme learning machine(EELM) is proposed in this study. First, the time sequence waveform of PV array is standardized. Then, SAE is used to automatically extract the features of the standardized time sequence waveforms, and an EELM model is trained for fault classification. Finally, BOA optimizes the overall diagnosis model. The experimental results show that the proposed method has 98.40% and 98.10% fault diagnosis accuracy for simulation and experiment, respectively, which is better than that of backpropagation neural network, support vector machine, random forest, etc.

Key words

photovoltaic array / fault diagnosis / stacked autoencoder(SAE) / extreme learning machine(ELM) / Bayesian optimization algorithm(BOA) / sequence waveform

Cite this article

Download Citations
Chen Shiqun, Yang Gengjie, Gao Wei. A FAULT DIAGNOSIS METHOD FOR PHOTOVOLTAIC ARRAY VIA BOA-SAE-EELM[J]. Acta Energiae Solaris Sinica. 2022, 43(4): 154-161 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0763

References

[1] 李光辉, 段晨东, 武珊.基于半监督机器学习法的光伏阵列故障诊断[J]. 电网技术, 2020, 44(5): 1908-1913.
LI G H, DUAN C D, WU S.Fault diagnosis of PV array based on semi-supervised machine learning[J]. Power system technology, 2020, 44(5): 1908-1913.
[2] ZHAO Y, PALMA J D, MOSESIAN J, et al. Line-line fault analysis and protection challenges in solar photovoltaic arrays[J]. IEEE transactions on industrial electronics, 2013, 60(9): 3784-3795.
[3] 胡义华, 邓焰, 何湘宁.光伏阵列故障诊断方法综述[J]. 电力电子技术, 2013(3): 21-23.
HU Y H, DENG Y, HE X N.A summary of PV array fault diagnosis method[J]. Power electronics, 2013(3): 21-23.
[4] MADETI S R, SINGH S N.A comprehensive study on different types of faults and detection techniques for solar photovoltaic system[J]. Solar energy, 2017, 158: 161-185.
[5] 毛峡, 李亚豪.光伏阵列故障检测中的无人机红外图像拼接[J]. 太阳能学报, 2020, 41(3): 262-269.
MAO X, LI Y H.Infrared image stitching of UAV in fault detection of photovoltaic array[J]. Acta energiae solaris sinica, 2020, 41(3): 262-269.
[6] 陈宇航, 闫腾飞, 谢添, 等. 基于功率损失和U-I特性综合考虑的光伏组件故障诊断方法[J]. 电机与控制应用, 2016, 43(11): 92-97.
CHEN Y H, YAN T F, XIE T, et al. A novel fault diagnosis method of photo voltaic module based on power loss and U-I characteristics[J]. Electric machines & control application, 2016, 43(11): 92-97.
[7] 毕锐, 丁明, 徐志成, 等. 基于模糊C均值聚类的光伏阵列故障诊断方法[J]. 太阳能学报, 2016, 37(3): 730-736.
BI R, DING M, XU Z C, et al. PV array fault diagnosis based on FCM[J]. Acta energiae solaris sinica, 2016, 37(3): 730-736.
[8] YI Z H, ETEMADI A H.Line-to-line fault detection for photovoltaic arrays based on multiresolution signal decomposition and two-stage support vector machine[J]. IEEE transactions on industrial electronics, 2017, 64(11): 8546-8556.
[9] ALAM M K, KHAN F, JOHNSON J, et al. A comprehensive review of catastrophic faults in PV arrays:Types, detection, and mitigation techniques[J]. IEEE journal of photovoltaics, 2015, 5(3): 982-997.
[10] PEI D Y, BURNS M, CHANDRAMOULI R, et al. Decoding asynchronous reaching in electro- encephalography using stacked autoencoder[J]. IEEE access, 2018, 6: 52889-52898.
[11] PRINCIPI E, ROSSETTI D, SQUARTINI S, et al. Unsupervised electric motor fault detection by using deep autoencoders[J]. IEEE/CAA journal of automatica sinica, 2019, 6(2): 441-451.
[12] HUANG G B, ZHOU H M, DING X J.Extreme learning machine for regression and multiclass classification[J]. IEEE transactions on systems, man and cybernetics, Part B(cybernetics), 2012, 42(2): 513-529.
[13] CHO H, KIM Y, RHEE W, et al. Basic enhancement strategies when using Bayesian optimization for hyperparameter tuning of deep neural networks[J]. IEEE access, 2020, 8: 52588-52608.
[14] LAURENS V D M, HINTON G.Visualizing data using t-SNE[J]. Journal of machine learning research, 2008, 9: 2579-2605.
[15] 贾嵘, 李云桥, 马富齐, 等. 基于改进BP神经网络的光伏阵列多传感器故障检测定位方法[J]. 太阳能学报, 2018, 39(1): 110-116.
JIA R, LI Y Q, MA F Q, et al. Multi-sensor fault detection and positioning method of photovoltaic array based on improved BP neural network[J]. Acta energiae solaris sinica, 2018, 39(1): 110-116.
[16] CHEN Z C, HAN F C, WU L J, et al. Random forest based intelligent fault diagnosis for PV arrays using array voltage and string currents[J]. Energy conversion and management, 2018, 178: 250-264.
PDF(2760 KB)

Accesses

Citation

Detail

Sections
Recommended

/