In order to further improve the output efficiency and dynamic control performance of the photovoltaic power generation system, an improved perturbation observation method MPPT control is designed in this paper based on neural network. A neural network algorithm is introduced based on the perturbation and observation method, so the dynamic adjustment speed is accelerated when the environment changed drastically. Through system simulation and hardware measurement, it’s concluded that, compared with the traditional perturbation observation and neural network method, the dynamic adjustment speed can be accelerated and steady error can be reduced to some extent with the improved perturbation observation method.
Key words
neural network /
photovoltaic module /
MPPT /
perturbation observation method
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 金碚.资源与环境约束下的中国工业发展[J]. 中国工业经济, 2005(4): 5-14.
JIN B.China’s industrial development under the constraints of resources and environment[J]. China industrial economics, 2005(4): 5-14.
[2] 国家能源局.2019年光伏发电并网运行情况[R]. 2020.
National Energy Administration.The grid-connected operation of photovoltaic power generation in 2019[R]. 2020.
[3] 邵龙, 刘观起, 胡婷.光伏发电系统最大功率点跟踪方法研究综述[J]. 电网与清洁能源, 2013, 29(2): 80-85.
SHAO L, LIU G Q, HU T.A review of research on maximum power point tracking methods for photovoltaic power generation systems[J]. Power grid and clean energy, 2013, 29(2): 80-85.
[4] 刘明亮, 张逸, 范元亮, 等. 一种基于变步长电导增量法的自适应MPPT控制策略[J]. 可再生能源, 2017, 35(5): 681-688.
LIU M L, ZHANG Y, FAN Y L, et al. An adaptive MPPT control strategy based on variable-step conductance increment method[J]. Renewable energy, 2017, 35(5): 681-688.
[5] KADIR A M, SHARIFAH S.Development of artificial neural network based MPPT for photovoltaic system during shading condition[J]. Applied mechanics and materials, 2013, 448/453: 1573-1578.
[6] 沈文忠.太阳能光伏技术与应用[M]. 上海: 上海交通大学出版社, 2013.
SHEN W Z.Solar photovoltaic technology and application[M]. Shanghai: Shanghai Jiaotong University Press, 2013.
[7] 鲍玉军.风光发电及传输技术[M]. 南京: 东南大学出版社, 2014.
BAO Y J.Wind and solar power generation and transmission technology[M]. Nanjing: Southeast University Press, 2014.
[8] 中国电气工程大典编辑委员会.中国电气工程大典,第2卷:电力电子技术[M]. 北京: 中国电力出版社, 2009: 193-194.
Editorial Committee of Chinese Electrical Engineering Dictionary.Chinese electrical engineering dictionary,Volume 2: Power electronics[M]. Beijing: China Electric Power Press, 2009:193-194.
[9] 施鸿宝.神经网络及其应用[M]. 西安: 西安交通大学出版社, 1993.
SHI H B.Neural network and its application[M]. Xi’an: Xi’an Jiaotong University Press, 1993.
[10] VIOTTI P, LIUTI G, GENOVA P DI.Atmospheric Urban Pollution: Applications of an artificial neural network (ANN) to the city of Perugia[J]. Ecological modelling, 2002, 148(1): 27-46.