RESEARCH ON PHOTOVOLTAIC MPPT CONTROL BASED ON ADAPTIVE MUTATION PARTICLE SWARM OPTIMIZATION ALGORITHM

Hua Yunhao, Zhu Wu, Jin Yiqi, Hua Ming, Wang Shixuan, Jiao Zhejing

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (4) : 219-225.

PDF(1753 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1753 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (4) : 219-225. DOI: 10.19912/j.0254-0096.tynxb.2020-0851
Topics on Key Technologies for Safety of Electrochemical Energy Storage Systems and Echelon Utilization of Decommissioned Power Batteries

RESEARCH ON PHOTOVOLTAIC MPPT CONTROL BASED ON ADAPTIVE MUTATION PARTICLE SWARM OPTIMIZATION ALGORITHM

  • Hua Yunhao1, Zhu Wu1, Jin Yiqi1, Hua Ming2, Wang Shixuan1, Jiao Zhejing1
Author information +
History +

Abstract

For the problem of partial shading condition(PSC), there will be multi-peaks phenomenon in the output P-U curve of photovoltaic array, and the traditional maximum power point tracking(MPPT) algorithm can easily fall into local optimal solution and cannot track down the global optimal solution. Based on the above, a photovoltaic MPPT control method based on adaptive mutation particle swarm optimization is proposed in this paper. The learning factors and inertia weights are adjusted synchronously during particle swarm optimization in order to improve the convergence speed and accuracy of the algorithm. At the same time, the mutation mechanism is introduced to expand the particle search range and enhance the global optimization of the algorithm. Simulation results show that the algorithm can quickly and accurately track the maximum power point under uniform illumination, static and dynamic partial shading conditions, with faster convergence and higher steady-state accuracy than the standard particle swarm optimization.

Key words

PV power / maximum power point tracking / partial shading / mutation particle swarm optimization

Cite this article

Download Citations
Hua Yunhao, Zhu Wu, Jin Yiqi, Hua Ming, Wang Shixuan, Jiao Zhejing. RESEARCH ON PHOTOVOLTAIC MPPT CONTROL BASED ON ADAPTIVE MUTATION PARTICLE SWARM OPTIMIZATION ALGORITHM[J]. Acta Energiae Solaris Sinica. 2022, 43(4): 219-225 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0851

References

[1] 赵书强, 王明雨, 胡永强, 等. 基于不确定理论的光伏出力预测研究[J]. 电工技术学报, 2015, 30(16): 213-220.
ZHAO S Q, WANG M Y, HU Y Q, et al. Research on the prediction of PV output based on uncertainty theory[J]. Transactions of China Electrotechnical Society, 2015, 30(16): 213-220.
[2] 李晶, 窦伟, 徐正国, 等. 光伏发电系统中最大功率点跟踪算法的研究[J]. 太阳能学报, 2007, (3): 268-273.
LI J, DOU W, XU Z G, et al. Research on MPPT methods of photovoltaic power generation system[J]. Acta energiae solaris sinica, 2007, 28(3): 268-273.
[3] 靳肖林, 文尚胜, 倪浩智, 等. 光伏发电系统最大功率点跟踪技术综述[J]. 电源技术, 2019, 43(3): 532-535.
JIN X L, WEN S S, NI H Z, et al. Review of maximum power point tracking of photovoltaic system[J]. Power technology, 2019, 43(3): 532-535.
[4] 于子捷, 魏晨曦, 田芳芳, 等. 一种改进型扰动观察法在最大功率点跟踪中的应用[J]. 电测与仪表, 2017, 54(15): 113-119.
YU Z J, WEI C X, TIAN F F, et al. An improved perturbation and observation method used in maximum power point tracking control of PV generation system[J]. Electrical measurement & instrumentation, 2017, 54(15): 113-119.
[5] 聂晓华, 赖家俊.局部阴影下光伏阵列全局最大功率点跟踪控制方法综述[J]. 电网技术, 2014, 38(12): 3279-3285.
NIE X H, LAI J J.A survey on tracking and control approaches for global maximum power point of photovoltaic arrays in partially shaded environment[J]. Power system technology, 2014, 38(12): 3279-3285.
[6] 石季英, 凌乐陶, 薛飞, 等. 领地粒子群算法在光伏最大功率跟踪的应用[J]. 太阳能学报, 2019, 40(9): 2554-2560.
SHI J Y, LING L T, XUE F, et al. Application of territotial PSO in global MPPT for PV array[J]. Acta energiae solaris sinica, 2019, 40(9): 2554-2560.
[7] 李世光, 夏杰, 李雪杨, 等. 改进APSO算法在光伏MPPT控制中的应用[J]. 电测与仪表, 2019, 56(22): 19-24.
LI S G, XIA J, LI X Y, et al. Application of improved APSO algorithm in photovoltaic MPPT control[J]. Electrical measurement & instrumentation, 2019, 56(22): 19-24.
[8] 杨海柱, 岳刚伟, 康乐.基于粒子群优化算法和电导增量法的多峰值MPPT控制[J]. 电源学报, 2019, 17(6): 128-136.
YANG H Z, YUE G W, KANG L.Multi-peak MPPT control based on PSO and INC algorithms[J]. Journal of power supply, 2019, 17(6): 128-136.
[9] 刘秋华, 张秀锦, 樊陈.基于功率差变步长扰动观察法的MPPT控制算法[J]. 电源技术, 2020, 44(7): 1035-1039.
LIU Q H, ZHANG X J, FAN C.MPPT control algorithm based on power difference variable step-size disturbance observation method[J]. Power technology, 2020, 44(7): 1035-1039.
[10] 张兴, 李善寿.局部遮挡时光伏阵列失配特性建模与分析[J]. 太阳能学报, 2014, 35(9): 1592-1598.
ZHANG X, LI S S.Modeling and analysis of mismatch characteristics of PV array under shading conditions[J]. Acta energiae solaris sinica, 2014, 35(9): 1592-1598.
[11] 韩鹏, 李银红, 何璇, 等. 结合量子粒子群算法的光伏多峰最大功率点跟踪改进方法[J]. 电力系统自动化, 2016, 40(23): 101-108.
HAN P, LI Y H, HE X, et al. Improved maximun power point tracking method for photovoltaic multi-peak based on quantum behaved particle swarm optimization algorithm[J]. Automation of electric power systems, 2016, 40(23): 101-108.
[12] 吴繁言, 李田泽, 徐亚南, 等. 基于权重指数递减粒子群算法在光伏MPPT中的应用[J]. 电测与仪表, 2019, 56(21): 81-87.
WU F Y, LI T Z, XU Y N, et al. Application of weighted index declining particle swarm optimization algorithm in photovoltaic MPPT[J]. Electrical measurement & instrumenttation, 2019, 56(21): 81-87.
[13] 陈维荣, 王伟颖, 郑义斌, 等. 局部阴影光伏发电系统中基于改进PSO的MPPT控制[J]. 西南交通大学学报, 2018, 53(6): 1095-1101, 1129.
CHEN W R, WANG W Y, ZHENG Y B, et al. MPPT control of partial shadow photovoltaic generation system based on improved PSO algorithm[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1095-1101, 1129.
[14] 王立乔, 鲍利斌, 孙孝峰.基于变异粒子群算法的光伏系统最大功率点跟踪研究[J]. 太阳能学报, 2016, 37(3): 743-751.
WANG L Q, BAO L B, SUN X F.Study of photovoltaic system maximum power point tracking based on mutation particle swarm of optimization[J]. Acta energiae solaris sinica, 2016, 37(3): 743-751.
[15] 王硕禾, 郑俊观, 陈祖成, 等. 基于改进粒子群优化算法光伏阵列多峰值MPPT的研究[J]. 可再生能源, 2019, 37(6): 879-885.
WANG S H, ZHENG J G, CHEN Z C, et al. Research on multi-peak MPPT of PV array based on improved PSO algorithm[J]. Renewable energy, 2019, 37(6): 879-885.
PDF(1753 KB)

Accesses

Citation

Detail

Sections
Recommended

/