The H-bridge inverter with sliding mode control based on improved idempotent approach law was taken as an example. Firstly, the discretized mathematical model of the system is established by using the stroboscopic mapping theory. Secondly, the nonlinear dynamic behavior of the system under different control parameters and was observed by stroboscopic diagram and spectrum diagram. Thirdly, the stability of the system was analyzed by using the fast-varying stability theorem, and the study conclusion is completely consistent with the stroboscopic diagram and spectrum chart analyses. Finally, the study showed that changes of external circuit parameters, such as, input voltage, load inductance and resistance have important effects on the stability of the system.
Key words
nonlinear /
H-bridge inverter /
sliding mode control /
improved idempotent approach law
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] ROBERT B, FEKI M, IU H H C. Control of a PWM inverter using proportional plus extended time delayed feedback[J]. International journal of bifurcation and chaos, 2006, 16(1): 113-128.
[2] LU M H, WANG X F, LOH P C, et al.Resonance interaction of multi-parallel grid-connected inverters with LCL-filter[J]. IEEE transactions on power electronics, 2017, 32(2): 894-899.
[3] ZHOU L, LONG Y P.Bifurcation and chaos of inverter system based on coefficient linear model[J]. Electric power automation equipment, 2013, 41(6): 32-37.
[4] CORRECHER A, GARCIA E, MORANT F, et al.Intermittent failure dynamics characterization[J]. IEEE transactions on reliability, 2012, 61(3): 649-658.
[5] MAZUMDER S K, NAYFEH A H, BOROYEVICH D.Theoretical and experimental investigation of the fast-and slow-scale instabilities of a DC-DC converter[J]. IEEE transactions on power electronics, 2001, 16(2): 201-216.
[6] ROBERT B, ROBERT C.Border collision bifurcations in a one-dimensional piecewise smooth map for a PWM current-programmed H-bridge inverter[J]. International journal of control, 2002, 75(16-17): 1356-1367.
[7] 王学梅, 张波, 丘东元. H桥正弦逆变器的快变和慢变稳定性及混沌行为研究[J]. 物理学报, 2009, 58(4): 2248-2254.
WANG X M, ZHANG B, QIU D Y.Fast and slow stability and chaotic behavior of H-bridge sinusoidal inverters[J]. Acta physica sinica, 2009, 58(4): 2248-2254.
[8] LEI B, XIAO G C, WU X L.Bifurcation analysis in a digitally controlled H-bridge grid-connected inverter[J]. International journal of bifurcation and chaos, 2014, 24(1): 1-15.
[9] 刘洪臣, 李飞, 杨爽. 基于周期性扩频的单相H桥逆变器非线性现象的研究[J]. 物理学报, 2013, 62(11): 98-105.
LIU H C, LI F, YANG S.Research on nonlinear phenomena of single-phase H-bridge inverter based on periodic spread spectrum[J]. Acta physica sinica, 2013, 62(11): 98-105.
[10] 郝翔, 谢瑞良, 杨旭, 等. 基于脉冲宽度调制的滑模变结构控制的一阶H桥逆变器的分岔和混沌行为研究[J]. 物理学报, 2013, 62(20): 1-15.
HAO X, XIE R L, YANG X, et al.Bifurcation and chaotic behavior of first-order H-bridge inverter based on sliding-mode variable structure control with pulse width modulation[J]. Acta physica sinica, 2013, 62(20): 1-15.