SHORT-TERM PHOTOVOLTAIC POWER FORECASTING BASED ON FLUCTUATION CHARACTERISTICS MINING

Ji Xin’ge, Li Hui, Ye Lin, Wang Lijie

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (5) : 146-155.

PDF(1503 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1503 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (5) : 146-155. DOI: 10.19912/j.0254-0096.tynxb.2020-0961

SHORT-TERM PHOTOVOLTAIC POWER FORECASTING BASED ON FLUCTUATION CHARACTERISTICS MINING

  • Ji Xin’ge1, Li Hui1, Ye Lin2, Wang Lijie1
Author information +
History +

Abstract

A short-term photovoltaic power forecasting method based on fluctuation characteristics mining is proposed in this paper. Firstly, the classification method and cluster identification method of photovoltaic power fluctuation are presented, considering the regularity and volatility of photovoltaic power affected by meteorological factors. Secondly,the Numerical Weather Prediction and the correlation analysis based on mutual information entropy are used to extract the weather fluctuation characteristics and highly correlated meteorological factors corresponding to various power fluctuations. Thirdly,the combined model of the long-short term memory network is put forward to mine the potential mapping relationship between the weather fluctuation and photovoltaic power fluctuation. Finally,after the types of weather fluctuations on the tested day are identified,its photovoltaic powers are predicted by using the combined method. The results of a photovoltaic power station in Northwest China show that the proposed model is effective.

Key words

photovoltaic power generation / power forecasting / data mining / fluctuations / deep learning / information entropy

Cite this article

Download Citations
Ji Xin’ge, Li Hui, Ye Lin, Wang Lijie. SHORT-TERM PHOTOVOLTAIC POWER FORECASTING BASED ON FLUCTUATION CHARACTERISTICS MINING[J]. Acta Energiae Solaris Sinica. 2022, 43(5): 146-155 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0961

References

[1] 龚莺飞, 鲁宗相, 乔颖, 等. 光伏功率预测技术[J]. 电力系统自动化, 2016, 40(4): 140-151.
GONG Y F, LU Z X, QIAO Y, et al.An overview of photovoltaic energy system output forecasting technology[J]. Automation of electric power systems, 2016, 40(4): 140-151.
[2] DEV S, LEE Y, WINKLER S, et al.Color-based segmentation of sky/cloud images from ground-based cameras[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2016, 10(1): 231-242.
[3] SUN X P, ZHANG T.Solar power prediction in smart grid based on NWP data and an improved boosting method[C]//IEEE International Conference on Energy Internet, Beijing, China, 2017.
[4] 王丽婕, 王勃, 王铮, 等. 基于数学形态学聚类与果蝇优化算法的风电功率短期预测[J]. 太阳能学报, 2019, 40(12): 3621-3627.
WANG L J, WANG B, WANG Z, et al.Wind power short-term prediction based on mathematical morphology cluster analysis and fruit fly optimization[J]. Acta energiae solaris sinica, 2019, 40(12): 3621-3627.
[5] 丁明, 刘志, 毕锐, 等. 基于灰色系统校正-小波神经网络的光伏功率预测[J]. 电网技术, 2015, 39(9): 2438-2443.
DING M, LIU Z, BI R, et al.Photovoltaic output prediction based on grey system correction-wavelet neural network[J]. Power system technology, 2015, 39(9): 2438-2443.
[6] 张展耀. 基于深度学习理论的光伏功率短期预测研究[D]. 北京: 华北电力大学, 2019.
ZHANG Z Y.The short-term solar power forecasting research based on deep learning theory[D]. Beijing: North China Electric Power University, 2019.
[7] 叶林, 陈政, 赵永宁, 等. 基于遗传算法-模糊径向基神经网络的光伏发电功率预测模型[J]. 电力系统自动化, 2015, 39(16): 16-22.
YE L, CHEN Z, ZHAO Y N, et al.Photovoltaic power forecasting model based on genetic algorithm and fuzzy radial basis function neural network[J]. Automation of electric power systems, 2015, 39(16): 16-22.
[8] 高相铭, 杨世凤, 潘三博. 基于EMD和ABC-SVM的光伏并网系统输出功率预测研究[J]. 电力系统保护与控制, 2015, 43(21): 86-92.
GAO X M, YANG S F, PAN S B.A forecasting model for output power of grid-connected photovoltaic generation system based on EMD and ABC-SVM[J]. Power system protection and control, 2015, 43(21): 86-92.
[9] 管霖, 赵琦, 周保荣, 等. 基于多尺度聚类分析的光伏功率特性建模及预测应用[J]. 电力系统自动化, 2018, 42(15): 24-30, 232-236.
GUAN L, ZHAO Q, ZHOU B R, et al. Multi-scale clustering analysis based modeling of photovoltaic power characteristics and its application in prediction[J]. Automation of electric power systems, 2018, 42(15): 24-30, 232-236.
[10] 丁明, 缪乐颖, 车建峰, 等. 基于波动过程匹配技术的短期风电功率预测[J]. 电网技术, 2018, 42(11): 3652-3659.
DING M, MIAO L Y, CHE J F, et al.Short-term wind power forecasting based on fluctuation process matching technology[J]. Power system technology, 2018, 42(11): 3652-3659.
[11] SILVA T, MONTEIRO R, MOURA F, et al.Performance analysis of neural network training algorithms and support vector machine for power generation forecast of photovoltaic panel[J]. IEEE Latin America transactions, 2017, 15(6): 1091-1100.
[12] GAO Y J, ZHU J, CHENG H X, et al.Study of short-term photovoltaic power forecast based on error calibration under typical climate categories[J]. Energies, 2016, 9(7): 1-15.
[13] LORENZ E, HURKA J, HEINEMANN D, et al.Irradiance forecasting for the power prediction of grid-connected photovoltaic systems[J]. IEEE journal of selected topics in applied earth observation and remote sensing, 2009, 2(1): 2-10.
[14] 殷豪, 陈云龙, 孟安波, 等. 基于二次自适应支持向量机的光伏输出功率预测[J]. 太阳能学报, 2019, 40(7): 1866-1873.
YIN H, CHEN Y L, MENG A B, et al.Forecasting photovoltaic power based on quadric self-adaptive SVM model[J]. Acta energiae solaris sinica, 2019, 40(7): 1866-1873.
[15] PUGGINI L, MCLOONE S.An enhanced variable selection and isolation forest based methodology for anomaly detection with OES data[J]. Engineering applications of artificial intelligence, 2016, 67: 126-135.
[16] 李梅, 宁德军, 郭佳程. 基于注意力机制的CNN-LSTM模型及其应用[J]. 计算机工程与应用, 2019, 55(13): 20-27.
LI M, NING D J, GUO J C.Attention mechanism-based CNN-LSTM model and its application[J]. Computer engineering and application, 2019, 55(13):20-27.
[17] 史坤鹏, 乔颖, 赵伟, 等. 计及历史数据熵关联信息挖掘的短期风电功率预测[J]. 电力系统自动化, 2017, 41(3): 13-18.
SHI K P, QIAO Y, ZHAO W, et al.Short-term wind power prediction based on entropy association information mining of historical data[J]. Automation of electric power systems, 2017, 41(3): 13-18.
[18] 吉锌格, 李慧, 刘思嘉, 等. 基于MIE-LSTM的短期光伏功率预测[J]. 电力系统保护与控制, 2020, 48(7): 50-57.
JI X G, LI H, LIU S J, et al.Short-term photovoltaic power forecasting based on MIE-LSTM[J]. Power system protection and control, 2020, 48(7): 50-57.
PDF(1503 KB)

Accesses

Citation

Detail

Sections
Recommended

/