MAXIMUM POWER POINT TRACKING STRATEGY FOR CENTRALIZED PHOTOVOLTAIC DC-DC CONVERTER

Ma Jian, Fan Yanfang, Wang Yibo, Zhang Xinyu

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (5) : 137-145.

PDF(2281 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2281 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (5) : 137-145. DOI: 10.19912/j.0254-0096.tynxb.2020-0962

MAXIMUM POWER POINT TRACKING STRATEGY FOR CENTRALIZED PHOTOVOLTAIC DC-DC CONVERTER

  • Ma Jian1,2, Fan Yanfang1, Wang Yibo3, Zhang Xinyu1,2
Author information +
History +

Abstract

The photovoltaic maximum power point tracking (MPPT) strategy for the system, which is configured with boost full-bridge isolated DC-DC converters (BFBIC) in input-parallel output-series (IPOS) structure, is studied via analyzing the converter operating characteristics with small signal analysis method. In order to meet the practicality in engineering, a new MPPT algorithm which can be coupled with DC-DC converter dual-loop control and based on the constant voltage method and the perturbation observation method is proposed. It accurately approximates the maximum power point by sampling three points with variable step size for comparison. By building a model in PSIM for simulation, the results show that the effectiveness and better tracking effect of the new MPPT strategy are verified.

Key words

solar power generation / maximum power point trackers / DC-DC converters / closed loop control systems / active clamp BFBIC

Cite this article

Download Citations
Ma Jian, Fan Yanfang, Wang Yibo, Zhang Xinyu. MAXIMUM POWER POINT TRACKING STRATEGY FOR CENTRALIZED PHOTOVOLTAIC DC-DC CONVERTER[J]. Acta Energiae Solaris Sinica. 2022, 43(5): 137-145 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0962

References

[1] 鞠昌斌, 王环, 孟姗姗, 等. 大功率、 高变比光伏高压直流并网变换器[J]. 太阳能学报, 2018, 39(2): 572-582.
JU C B, WANG H, MENG S S, et al.High power and high ratio of PV high voltage DC grid connected converter[J]. Acta energiae solaris sinica, 2018, 39(2): 572-582.
[2] 赵争鸣, 陈剑, 孙晓瑛. 太阳能光伏发电最大功率点跟踪技术[M]. 北京: 电子工业出版社, 2012.
ZHAO Z M, CHEN J, SUN X Y.Maximum power point tracking technology for photovoltaic power generation[M]. Beijing: Publishing House of Electronics Industry, 2012.
[3] 余良辉. 光伏发电最大功率跟踪技术及并网系统研究[D]. 南京: 南京理工大学, 2013.
YU L H.Research on maximum power point tracking techniques and photovoltaic grid-connected system[D].Nanjing: Nanjing University of Science & Technology, 2013.
[4] 何人望, 邱万英, 吴迅, 等. 基于PSIM的新型扰动观察法的MPPT仿真研究[J]. 电力系统保护与控制, 2012, 40(7): 56-59, 65.
HE R W, QIU W Y, WU X, et al.Simulation study of new perturbation and observation method in MPPT based on PSIM[J]. Power system protection and control, 2012, 40(7): 56-59, 65.
[5] 王飞龙, 刘静, 郑磊, 等. 基于扰动观察法的无乘法器MPPT控制器研究[J]. 电力电子技术, 2020, 54(5): 80-82, 87.
WANG F L, LIU J, ZHENG L, et al.An analog MPPT controller research without multiplier based on P&O method[J]. Power electronics, 2020, 54(5): 80-82, 87.
[6] HARRAG A, MESSALTI S, DAILI Y.Innovative single sensor neural network PV MPPT[C]//2019 6th International Conference on Control, Decision and Information Technologies, Paris, France, 2019.
[7] 武迪, 许春雨, 郑丽君, 等. 基于β参数的光伏系统最大功率点跟踪算法研究[J]. 太阳能学报, 2020, 41(6): 234-241.
WU D, XU C Y, ZHENG L J, et al.Maximum power point tracking algorithm of photovoltaic system based on β-parameter[J]. Acta energiae solaris sinica, 2020, 41(6): 234-241.
[8] LI X S, WEN H Q, JIANG L, et al.An improved MPPT method for PV system with fast-converging speed and zero oscillation[J]. IEEE transactions on industry applications, 2016, 52(6): 5051-5064.
[9] 蒋俊祁. 基于非奇异快速终端滑模控制光伏并网逆变器最大功率跟踪研究[J]. 可再生能源, 2018, 36(7): 1022-1026.
JIANG J Q.Maximum power point tracking method based on non-singular fast terminal sliding model control[J]. Renewable energy resources, 2018, 36(7): 1022-1026.
[10] KUMAR M R, NARAYANA S S, VULASALA G.Advanced sliding mode control for solar PV array with fast voltage tracking for MPP algorithm[J]. International journal of ambient energy, 2020, 41(10): 1192-1200.
[11] 梅润杰, 张经炜. 基于Z源逆变器的粒子群和模糊变步长电导增量MPPT算法[J]. 太阳能学报, 2020, 41(1): 137-145.
MEI R J, ZHANG J W.MPPT algorithm of particle swarm optimization and fuzzy variable step incremental conductance method based on Z-source inverter[J]. Acta energiae solaris sinica, 2020, 41(1): 137-145.
[12] 张晓强, 刘宜罡, 邹应全, 等. 基于自适应神经网络控制的光伏MPPT算法改进[J]. 太阳能学报, 2019, 40(11): 3095-3102.
ZHANG X Q, LIU Y G, ZOU Y Q, et al.An enhanced photovoltaic MPPT approach based on adaptive neural network control[J]. Acta energiae solaris sinica, 2019, 40(11): 3095-3102.
[13] 裴婷婷, 郝晓弘. 局部阴影条件下光伏阵列的动态建模[J]. 太阳能学报, 2020, 41(2): 268-274.
PEI T T, HAO X H.Dynamic modeling of PV array under partial shading condition[J]. Acta energiae solaris sinica, 2020, 41(2): 268-274.
[14] WANG Y B, JU C B, WANG H, et al. Design and control of DC-DC grid-connected converter for photovoltaic power[C]//EU PVSEC2015 Proceedings, Hamburg, Germany, 2353-2357.
[15] 中华人民共和国科学技术部. 国家重点研发计划“智能电网技术与装备”重点专项2016年度项目申报指南[EB/R]. https://wenku.baidu.com/view/a7ff064959fb770 bf78a6529647d27284a73374f.html, 2016.
Ministry of Science and Technology of the People’s Republic of China. National key R&D program Smart Grid Technology and Equipment key special project 2016 project application guide[EB/R]. https://wenku.baidu.com/view/a7ff064959fb770bf78a6529647d27284a73374f.html, 2016.
[16] ÖZTÜRK S, POŞPOŞ P, UTALAY V, et al. Operating principles and practical design aspects of all SiC DC/AC/DC converter for MPPT in grid-connected PV supplies[J]. Solar energy, 2018, 176: 380-394.
[17] SHAH N, CHUDAMANI R.Grid interactive PV system with harmonic and reactive power compensation features using a novel fuzzy logic based MPPT[C]//IEEE 7th International Conference on Industrial and Information Systems, Chennai, India, 2012.
[18] BURGMEIER J, RATHORE A K.Extended range ZVS active- clamped current-fed full-bridge isolated DC/DC converter for fuel cell applications: Analysis, design, and experimental results[J]. IEEE transactions on industrial electronics, 2013, 60(7): 2661-2672.
PDF(2281 KB)

Accesses

Citation

Detail

Sections
Recommended

/