METHOD OF ESTIMATING FREQUENCY REGULATION CAPACITY OF WIND FARM BASED ON WIND POWER PROBABILITY PREDICTION

Yang Xiyun, Liu Yaxin, Xing Guotong, Zhang Yuechao

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (7) : 409-416.

PDF(1618 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1618 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (7) : 409-416. DOI: 10.19912/j.0254-0096.tynxb.2020-1085

METHOD OF ESTIMATING FREQUENCY REGULATION CAPACITY OF WIND FARM BASED ON WIND POWER PROBABILITY PREDICTION

  • Yang Xiyun1, Liu Yaxin1, Xing Guotong2, Zhang Yuechao3
Author information +
History +

Abstract

Considering the uncertainty of wind power, this paper proposes a new method to estimate the frequency regulation capacity of wind farms based on the probability prediction intervals of wind power and energy storage equipment. Firstly, based on the abandoned data of wind power in the wind farm, the capacity allocation of its energy storage system can be obtained by using particle swarm optimization (PSO). Then, the Copula quantile regression model is established to get the probability prediction intervals of wind power. Finally, the estimated optimal capacity for frequency regulation is generated by combining the probability prediction curves under different confidence probabilities and the day-ahead limits of wind power. The simulation of the actual data provided by a wind farm proves the effectiveness of this method, which provides a useful exploration for the study of the frequency regulation ability of wind farms.

Key words

wind power / forecasting / particle swarm optimization(PSO) / optimal allocation of energy storage / estimation of wind farm frequency regulation capacity / Copula quantile regression

Cite this article

Download Citations
Yang Xiyun, Liu Yaxin, Xing Guotong, Zhang Yuechao. METHOD OF ESTIMATING FREQUENCY REGULATION CAPACITY OF WIND FARM BASED ON WIND POWER PROBABILITY PREDICTION[J]. Acta Energiae Solaris Sinica. 2022, 43(7): 409-416 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1085

References

[1] 娄素华, 杨天蒙, 吴耀武, 等. 含高渗透率风电的电力系统复合储能协调优化运行[J]. 电力系统自动化, 2016, 40(7): 30-35.
LOU S H, YANG T M, WU Y W, et al.Coordinated optimal operation of hybrid energy storage in power system accommodated high penetration of wind power[J]. Automation of electric power systems, 2016, 40(7): 30-35.
[2] 娄素华, 吴耀武, 崔艳昭, 等. 电池储能平抑短期风电功率波动运行策略[J]. 电力系统自动化, 2014, 38(2): 17-22, 58.
LOU S H, WU Y W, CUI Y Z, et al.Operation strategy of battery energy storage system for smoothing short-term wind power fluctuation[J]. Automation of electric power systems, 2014, 38(2): 17-22, 58.
[3] 胡泽春, 夏睿, 吴林林, 等. 考虑储能参与调频的风储联合运行优化策略[J]. 电网技术, 2016, 40(8): 2251-2257.
HU Z C, XIA R, WU L L, et al.Joint operation optimization of wind-storage union with energy storage participating frequency regulation[J]. Power system technology, 2016, 40(8): 2251-2257.
[4] 赵爱云, 陈宽. 储能电池参与风电调频控制策略[J]. 通信电源技术, 2018, 35(7): 29, 214.
ZHAO A Y, CHEN K. Control strategy of energy storage battery participating in wind power frequency regulation[J]. Telecom power technology, 2018, 35(7): 29, 214.
[5] SAVKIN A V, KHALID M, AGELIDIS V G.A constrained monotonic charging/discharging strategy for optimal capacity of battery energy storage supporting wind farms[J]. IEEE transactions on sustainable energy, 2016, 7(3): 1224-1231.
[6] 吴玮坪, 胡泽春, 宋永华. 结合随机规划和序贯蒙特卡洛模拟的风电场储能优化配置方法[J]. 电网技术, 2018, 42(4): 1055-1062.
WU W P, HU Z C, SONG Y H.Optimal sizing of energy storage system for wind farms combining stochastic programming and sequential Monte Carlo simulation[J]. Power system technology, 2018, 42(4): 1055-1062.
[7] 叶瑞丽, 郭志忠, 刘瑞叶, 等. 基于风电功率预测误差分析的风电场储能容量优化方法[J]. 电力系统自动化, 2014, 38(16): 28-34.
YE R L, GUO Z Z, LIU R Y, et al.A method for designing optimal energy storage system based on analysis of wind power forecast error[J]. Automation of electric power systems, 2014, 38(16): 28-34.
[8] 吴杰, 丁明, 张晶晶. 基于云模型和k-means聚类的风电场储能容量优化配置方法[J]. 电力系统自动化, 2018, 42(24): 67-76.
WU J, DING M, ZHANG J J.Capacity configuration method of energy storage system for wind farm based on cloud model and k-means clustering[J]. Automation of electric power systems, 2018, 42(24): 67-76.
[9] 韩涛, 卢继平, 乔梁, 等. 大型并网风电场储能容量优化方案[J]. 电网技术, 2010, 34(1): 169-173.
HAN T, LU J P, QIAO L, et al.Optimized scheme of energy-storage capacity for grid-connected large-scale wind farm[J]. Power system technology, 2010, 34(1): 169-173.
[10] 王娜, 任燕燕. 基于固定效应面板数据的Copula分位数回归及模拟[J]. 统计与决策, 2019, 35(19): 82-86.
WANG N, REN Y Y.Using Copula quantile regression with panel data[J]. Statistics & decision, 2019, 35(19): 82-86.
[11] 季峰, 蔡兴国, 王俊. 基于混合Copula函数的风电功率相关性分析[J]. 电力系统自动化, 2014, 38(2): 1-5,32.
JI F, CAI X G, WANG J.Wind power correlation analysis based on hybrid copula[J]. Automation of electric power systems, 2014, 38(2): 1-5, 32.
[12] 王娜. 面板数据分位数回归模型求解及应用研究[D]. 济南: 山东大学, 2017.
WANG N.Research on solving and applying of quantile regression for panel data[D]. Ji’nan: Shandong University, 2017.
[13] 武佳卉, 邵振国, 杨少华, 等. 数据清洗在新能源功率预测中的研究综述和展望[J]. 电气技术, 2020, 21(11): 1-6.
WU J H, SHAO Z G, YANG S H, et al.Review and prospect of data cleaning in renewable energy power prediction[J]. Electrical engineering, 2020, 21(11): 1-6.
[14] 梅简, 张杰, 刘双宇, 等. 电池储能技术发展现状[J]. 浙江电力, 2020, 39(3): 75-81.
MEI J, ZHANG J, LIU S Y, et al.Development status of battery energy storage technology[J]. Zhejiang electric power, 2020, 39(3): 75-81.
PDF(1618 KB)

Accesses

Citation

Detail

Sections
Recommended

/