RESEARCH ON BUCKLING CHARACTERISTICS OF OFFSHORE WIND POWER STRUCTURE SUPPORTED BY SINGLE-CYLINDER MULTI-CELL BUCKET FOUNDATION

Wang Haijun, Liu Wei, Yan Xiaorong, Lian Jijian

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (7) : 402-408.

PDF(2029 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2029 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (7) : 402-408. DOI: 10.19912/j.0254-0096.tynxb.2020-1086

RESEARCH ON BUCKLING CHARACTERISTICS OF OFFSHORE WIND POWER STRUCTURE SUPPORTED BY SINGLE-CYLINDER MULTI-CELL BUCKET FOUNDATION

  • Wang Haijun1,2, Liu Wei1,2, Yan Xiaorong3, Lian Jijian1,2
Author information +
History +

Abstract

The cylinder of offshore wind power bucket foundation is prone to buckling and instability when it is installed into the soil, which seriously affects the safety of the foundation structure. The thesis analyzes the stability of the bucket foundation in the sinking process and studies its instability mode and critical buckling load as well as the influence of the compartment and longitudinal stiffeners on the critical value of the internal and external pressure difference of the bucket. The results showed that the instability of the cylinder of the bucket foundation belongs to the extreme point instability and the nonlinear method should be used to determine the critical load of structural instability. Both the compartment and the stiffeners with appropriate spacing can increase the critical buckling load of the bucket. However, as the top of the tube top approaches the mud surface, its lifting effect gradually decreases, and the control condition of the internal and external pressure difference of the bucket is changed to prevent the soil in the bucket from permeating damage.

Key words

offshore wind power / buckling / nonlinear analysis / bucket foundation / arc-length method / stiffeners

Cite this article

Download Citations
Wang Haijun, Liu Wei, Yan Xiaorong, Lian Jijian. RESEARCH ON BUCKLING CHARACTERISTICS OF OFFSHORE WIND POWER STRUCTURE SUPPORTED BY SINGLE-CYLINDER MULTI-CELL BUCKET FOUNDATION[J]. Acta Energiae Solaris Sinica. 2022, 43(7): 402-408 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1086

References

[1] 赵悦, 练冲, 练继建, 等. 海上风电筒型结构基础层状地基参数优化反演[J]. 天津大学学报(自然科学与工程技术版), 2019, 52(4): 423-429.
ZHAO Y, LIAN C, LIAN J J, et al.Optimization inversion of multi-layer subsoil parameters for offshore wind turbine structure supported by bucket foundation[J]. Journal of Tianjin University(science and technology), 2019, 52(4): 423-429.
[2] 祁越, 刘润, 练继建. 无黏性土中筒型基础负压下沉模型试验[J]. 岩土力学, 2018, 39(1): 139-150.
QI Y, LIU R, LIAN J J.Model test of bucket foundation suction installation in cohesionless soil[J]. Rock and soil mechanics, 2018, 39(1): 139-150.
[3] 练继建, 陈飞, 杨旭, 等. 海上风机复合筒型基础负压沉放调平[J]. 天津大学学报(自然科学与工程技术版), 2014, 47(11): 987-993.
LIAN J J, CHEN F, YANG X, et al.Suction installation and leveling of composite bucket foundation for offshore wind turbines[J]. Journal of Tianjin University(science and technology), 2014, 47(11): 987-993.
[4] 孙宇. 外压载荷下复合材料圆柱壳的缺陷敏感性研究[D]. 大连: 大连理工大学, 2017.
SUN Y.Imperfection sensitivity of composite cylindrical shell under external pressure[D]. Dalian: Dalian University of Technology, 2017.
[5] BAKMAR C L, AHLE K, NIELSEN S A, et al.The monopod bucket foundation: recent experiences and challenges ahead[C]//European Offshore Wind Conference & Exhibition, Stockholm, Sweden, 2009.
[6] MADSEN S, ANDERSEN L V, IBSEN L B.Numerical buckling analysis of large suction caissons for wind turbines on deep water[J]. Engineering structures, 2013, 57: 443-452.
[7] GB 50884—2013, 钢筒仓技术规范(附条文说明)[S].
GB 50884—2013, Technical specification for steel silos (with clauses)[S].
[8] EN1993-1-6-2007, Eurocode 3: design of steel structures(Part 1-6): strength and stability of shell structures[S].
[9] 韩庆华, 金辉, 艾军, 等. 工程结构整体屈曲的临界荷载分析[J]. 天津大学学报, 2005, 38(12): 1051-1057.
HAN Q H, JIN H, AI J, et al.Analysis of the overall buckling load for engineering structures[J]. Journal of Tianjin University, 2005, 38(12): 1051-1057.
[10] 张翀, 舒赣平. 轴压和均匀内压下钢筒仓圆柱壳屈曲承载力研究[J]. 特种结构, 2015, 32(4): 1-7.
ZHANG C, SHU G P.Bearing capacity axial pressure and pressure uniformity within the cylindrical shell of steel silo buckling[J]. Special structures, 2015, 32(4): 1-7.
[11] 唐敢. 板片空间结构缺陷稳定分析及试验研究[D]. 南京: 东南大学, 2005.
TANG G.Theoretical and experimental research on the stability of the sheet-space structure with imperfections [D]. Nanjing: Southeast University, 2005.
[12] 李朋波. 薄壁加筋圆柱壳静动力屈曲特性数值模拟与实验研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.
LI P B.Numerical simulation and experimental research on the static and dynamic buckling characteristics of thin-walled stiffened cylindrical shell[D]. Harbin: Harbin Engineering University, 2017.
[13] 韩庆华, 赵秋红, 芦燕. 钢结构稳定性[M]. 武汉: 武汉大学出版社, 2014: 40-41.
HAN Q H, ZHAO Q H, LU Y.Stability of steel structure [M]. Wuhan: Wuhan University Press, 2014: 40-41.
[14] 沈世钊. 网壳结构的稳定性[J]. 土木工程学报, 1999(6): 11-19, 25.
SHEN S Z.Stability of latticed shells[J]. China civil engineering journal, 1999(6): 11-19, 25.
[15] 万福腾. 纵向加筋薄壁圆柱壳轴压屈曲稳定性研究[D]. 杭州: 浙江大学, 2017.
WAN F T.Research on buckling analysis of stringer-stiffened thin-walled cylindrical shell under axial load[D]. Hangzhou: Zhejiang University, 2017.
[16] SONG C Y, TENG J G, ROTTER M J.Imperfection sensitivity of thin elastic cylindrical shells subject to partial axial compression[J]. International journal of solids and structures, 2004, 41(24): 7155-7180.
[17] 叶军, 赵阳, 俞激. 初始几何缺陷对仓壁柱承钢筒仓稳定性能的影响[J]. 工程力学, 2006(12): 100-105.
YE J, ZHAO Y, YU J.The effect of initial geometric imperfections on stability behavior of column-supported steel silos with engaged columns[J]. Engineering mechanics, 2006(12): 100-105.
[18] 陈志平, 唐小雨, 苏文强, 等. 薄壁圆柱壳轴压屈曲研究技术进展[C]//压力容器先进技术—第九届全国压力容器学术会议, 中国合肥, 2017.
CHEN Z P, TANG X Y, SU W Q, et al.Research progress in buckling of thin-walled cylindrical shell under axial compression[C]//Advanced Technology of Pressure Vessels-Proceedings of the Ninth National Conference, Hefei, China, 2017.
[19] 乔丕忠, 王艳丽, 陆林军. 圆柱壳稳定性问题的研究进展[J]. 力学季刊, 2018, 39(2): 223-236.
QIAO P Z, WANG Y L, LU L J.Advances in stability study of cylindrical shells[J]. Chinese quarterly of mechanics, 2018, 39(2): 223-236.
PDF(2029 KB)

Accesses

Citation

Detail

Sections
Recommended

/