MULTI-OBJECTIVE OPTIMAL SCHEDULING OF INTEGRATED ENERGY SYSTEM WITH THERMODYNAMIC EXERGY ANALYSIS METHOD

Huang Yu, Wang Yutao, Li Shuqin, Yang Kai, Wang Dongfeng, Li Yongling

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (7) : 30-38.

PDF(1930 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1930 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (7) : 30-38. DOI: 10.19912/j.0254-0096.tynxb.2020-1167

MULTI-OBJECTIVE OPTIMAL SCHEDULING OF INTEGRATED ENERGY SYSTEM WITH THERMODYNAMIC EXERGY ANALYSIS METHOD

  • Huang Yu1, Wang Yutao1, Li Shuqin1, Yang Kai1, Wang Dongfeng1, Li Yongling2
Author information +
History +

Abstract

Building a multi-objective optimal scheduling model and solving it efficiently is conducive to the development and utilization of renewable energy, and makes much sense to explore the potential of cost reduction and efficiency increase for a integrated energy system. Based on the integrated energy system with photovoltaic power generation, this paper establishes the multi-objective operation model of minimizing the reciprocal of system exergy efficiency and minimizing the economic index, combined with the integrated demand response model of electricity heat and cooling and the operation constraints. The non-convex nonlinear terms in the model are dealt with, and the problem is transformed from multi-objective mixed integer linear-fractional programming to multi-objective mixed integer linear programming. Furthermore, in order to obtain Pareto front efficiently, the ε-constraint approach is used to transform it into a series of single objective mixed integer linear programming problems, and TOPSIS method is used for decision-making. The simulation results show that the multi-objective optimization scheduling model can not only improve the system operation flexibility and reduce the operation cost, but also achieve the trade-off between the system operation cost and the exergy efficiency compared with the single objective operation.

Key words

integrated energy system / optimization / mathematical models / exergy analysis / integrated demand response

Cite this article

Download Citations
Huang Yu, Wang Yutao, Li Shuqin, Yang Kai, Wang Dongfeng, Li Yongling. MULTI-OBJECTIVE OPTIMAL SCHEDULING OF INTEGRATED ENERGY SYSTEM WITH THERMODYNAMIC EXERGY ANALYSIS METHOD[J]. Acta Energiae Solaris Sinica. 2022, 43(7): 30-38 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1167

References

[1] 吴克河, 王继业, 李为, 等. 面向能源互联网的新一代电力系统运行模式研究[J]. 中国电机工程学报, 2019, 39(1): 966-979.
WU K H, WANG J Y, LI W, et al.Research on the operation mode of new generation electric power system for the future energy internet[J]. Proceedings of the CSEE, 2019, 39(1): 966-979.
[2] 郑亚锋, 魏振华, 高宇峰, 等. 多能流系统经济-节能多目标最优运行[J]. 电力系统及其自动化学报, 2020, 32(9): 77-85.
ZHENG Y F, WEI Z H, GAO Y F, et al.Multi-objective optimal operation of multi energy carrier system considering economy and energy conservation[J]. Proceedings of the CSU-EPSA, 2020, 32(9): 77-85.
[3] 孙宏斌, 郭庆来, 吴文传, 等. 面向能源互联网的多能流综合能量管理系统: 设计与应用[J]. 电力系统自动化, 2019, 43(12): 122-128, 17.
SUN H B, GUO Q L, WU W C, et al.Integrated energy management system with multi-energy flow for energy internet: design and application[J]. Automation of electric power systems, 2019, 43(12): 122-128, 17.
[4] LI Z M, XU Y.Optimal coordinated energy dispatch of a multi-energy microgrid in grid-connected and islanded modes[J]. Applied energy, 2018, 210: 974-986.
[5] 卫志农, 张思德, 孙国强, 等. 基于碳交易机制的电—气互联综合能源系统低碳经济运行[J]. 电力系统自动化, 2016, 40(15): 9-16.
WEI Z N, ZHANG S D, SUN G Q, et al.Carbon trading based low-carbon economic operation for integrated electricity and natural gas energy system[J]. Automation of electric power systems, 2016, 40(15): 9-16.
[6] SHABANPOUR-HAGHIGHI A, SEIFI A R.Multi-objective operation management of a multi-carrier energy system[J]. Energy, 2015, 88: 430-442.
[7] 沈维道, 童钧耕. 工程热力学[M]. 北京: 高等教育出版社, 2016: 173-176.
SHEN W D, TONG J G.Engineering Thermodynamics[M]. Beijing: Higber Education Press, 2016: 173-176
[8] 郭艳飞, 吴强, 程林, 等. 基于火用效率的综合能源系统能效分析模型[J]. 可再生能源, 2017, 35(9): 1387-1394.
GUO Y F, WU Q, CHENG L, et al.Efficiency analysis model of integrated energy system based on the exergy efficiency[J]. Renewable energy resources, 2017, 35(9): 1387-1394.
[9] 胡枭, 尚策, 陈东文, 等. 考虑能量品质的区域综合能源系统多目标规划方法[J]. 电力系统自动化, 2019, 43(19): 22-38,139.
HU X, SHANG C, CHEN D W, et al.Multi-objective planning method for regional integrated energy systems considering energy quality[J]. Automation of electric power systems, 2019, 43(19): 22-38, 139.
[10] 陈光宇, 黄越辉, 张仰飞, 等. 基于博弈策略含风电和机组运行极限约束的多目标优化调度模型及求解[J]. 太阳能学报, 2020, 41(7): 372-384.
CHEN G Y, HUANG Y H, ZHANG Y F, et al.Multi objective optimal scheduling model and solution method based on wind power and unit operation limit constraints[J]. Acta energiae solaris sinica, 2020, 41(7): 372-384.
[11] 孙青琳. 基于火用分析的能源效率评价模型研究及应用[D]. 北京: 华北电力大学, 2016.
SUN Q L.Research and application of energy efficiency evaluation model based on exergy analysis[D]. Beijing: North China Electric Power University, 2016.
[12] 陈聪, 沈欣炜, 夏天, 等. 计及火用效率的综合能源系统多目标优化调度方法[J]. 电力系统自动化, 2019, 43(12): 60-68, 121.
CHEN C, SHEN X W, XIA T, et al.Multi-objective optimal dispatch method for integrated energy system considering exergy efficiency[J]. Automation of electric power systems, 2019, 43(12): 60-68, 121.
[13] 张钦, 王锡凡, 王建学, 等. 电力市场下需求响应研究综述[J]. 电力系统自动化, 2008, 32(3): 97-106.
ZHANG Q, WANG X F, WANG J X, et al.Survey of demand response research in deregulated electricity markets[J]. Automation of electric power systems, 2008, 32(3): 97-106.
[14] 马腾飞, 吴俊勇, 郝亮亮, 等. 基于能源集线器的微能源网能量流建模及优化运行分析[J]. 电网技术, 2018, 42(1): 179-186.
MA T F, WU J Y, HAO L L, et al.Energy flow modeling and optimal operation analysis of micro energy grid based on energy hub[J]. Power system technology, 2018, 42(1): 179-186.
[15] MAJIDI M, NOJAVAN S, ZARE K.A cost-emission framework for hub energy system under demand response program[J]. Energy, 2017, 134: 157-166.
[16] 张峰, 杨志鹏, 张利, 等. 计及多类型需求响应的孤岛型微能源网经济运行[J]. 电网技术, 2020, 44(2): 547-557.
ZHANG F, YANG Z P, ZHANG L, et al.Optimal operation of islanded micro energy grid with multi-type demand responses[J]. Power system technology, 2020, 44(2): 547-557.
[17] 刘蓉晖, 李子林, 杨秀, 等. 考虑用户侧柔性负荷的社区综合能源系统日前优化调度[J]. 太阳能学报, 2019, 40(10): 2842-2850.
LIU R H, LI Z L, YANG X, et al.Optimal dispatch of community integrated energy system considering user-side flexible load[J]. Acta energiae solaris sinica, 2019, 40(10): 2842-2850.
[18] 吴红斌, 董淑涛, 丁明. 考虑需求侧响应的风电功率分层平滑方法[J]. 太阳能学报, 2018, 39(9): 2418-2424.
WU H B, DONG S T, DING M.A layered method for smoothing fluctuation of wind power based on demand response[J]. Acta energiae solaris sinica, 2018, 39(9): 2418-2424.
[19] 关欣, 黄素逸. 节能技术及案例分析[M]. 北京: 中国电力出版社, 2016.
GUAN X, HUANG S Y.Energy saving technology and case analysis[M]. Beijing: China Electric Power Press, 2016.
[20] TORÍO H, ANGELOTTI A, SCHMIDT D. Exergy analysis of renewable energy-based climatisation systems for buildings: A critical view[J]. Energy and buildings, 2009, 41(3): 248-271.
[21] 王继选, 吴智泉, 韩中合, 等. 基于高位热值的燃料化学火用模型及计算分析[J]. 动力工程学报, 2012, 32(10): 804-808.
WANG J X, WU Z Q, HAN Z H, et al.Calculation and analysis of the chemical exergy based on high heating values of fuel[J]. Journal of Chinese Society of Power Engineering, 2012, 32(10): 804-808.
[22] 史海林. 基于火用分析的能源利用效率评价模型的研究[D]. 北京: 华北电力大学, 2011.
SHI H L.Research on evaluation model of energy utilization efficiency based on exergy analysis[D]. Beijing: North China Electric Power University, 2011.
[23] JING R, ZHU X Y, ZHU Z Y, et al.A multi-objective optimization and multi-criteria evaluation integrated framework for distributed energy system optimal planning[J]. Energy conversion and management, 2018, 166: 445-462.
[24] MA T F, WU J Y, HAO L L, et al.The optimal structure planning and energy management strategies of smart multi energy systems[J]. Energy, 2018, 160: 122-141.
[25] ZHOU Z, LIU P, LI Z, et al.Impacts of equipment off-design characteristics on the optimal design and operation of combined cooling, heating and power systems[J]. Computers and chemical engineering, 2013, 48: 40-47.
[26] MA T F, WU J Y, HAO L L, et al.The optimal structure planning and energy management strategies of smart multi energy systems[J]. Energy, 2018, 160: 122-141.
[27] DENG S, WU Q H, JING Z X, et al.Optimal capacity configuration for energy hubs considering part-load characteristics of generation units[J]. Energies, 2017, 10(12): 1966.
PDF(1930 KB)

Accesses

Citation

Detail

Sections
Recommended

/