BEARING FAULT DIAGNOSIS BASED ON AE-IFCM

Wang Jinhua, Wang Yuelong, Huang Tao, Cao Jie

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (7) : 310-315.

PDF(1666 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1666 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (7) : 310-315. DOI: 10.19912/j.0254-0096.tynxb.2020-1232

BEARING FAULT DIAGNOSIS BASED ON AE-IFCM

  • Wang Jinhua1, Wang Yuelong1, Huang Tao2, Cao Jie1,3
Author information +
History +

Abstract

The traditional fuzzy clustering method clustering the fault is based on the similarity between the original data. But in the fault diagnosis of rolling bearings, that way cannot extracted the deep features of the bearing data well. Especially, in the complex conditions such as coupling faults and weak faults, it is difficult to effectively distinguish the different faults features, which results in low accuracy. In order to solve that problem, we propose the AE-IFCM bearing fault diagnosis method. In this framework, the Auto-Encoder(AE) network is used to extract the deep features of the bearing fault samples, and then we utilize the improved FCM for fault diagnosis. It clusters the abstract features extracted by the AE network to maximize the utilization of the sample data and reduce the risk of the model falling into a local minimum. Experiments in the Case Western Reserve university bearing fault data collection show that AE-IFCM can improve the accuracy of bearing fault diagnosis.

Key words

fault diagnosis / autoencoder / fuzzy clustering / roll bearing

Cite this article

Download Citations
Wang Jinhua, Wang Yuelong, Huang Tao, Cao Jie. BEARING FAULT DIAGNOSIS BASED ON AE-IFCM[J]. Acta Energiae Solaris Sinica. 2022, 43(7): 310-315 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1232

References

[1] 周东华, 胡艳艳. 动态系统的故障诊断技术[J]. 自动化学报, 2009, 35(6): 748-758.
ZHOU D H, HU Y Y.Fault diagnosis techniques for dynamic systems[J]. Acta automatica sinica, 2009, 35(6): 748-758.
[2] 李昂, 付敬奇, 沈华明, 等. 基于模糊聚类和猫群算法的室内定位算法[J]. 仪器仪表学报, 2020, 41(1): 185-194.
LI A, FU J Q, SHEN H M, et al.Indoor positioning algorithm based on fuzzy clustering and cat swarm optimization[J]. Chinese journal of scientific instrument, 2020, 41(1): 185-194.
[3] 张天瑞, 于天彪, 赵海峰, 等. 数据挖掘技术在全断面掘进机故障诊断中的应用[J]. 东北大学学报(自然科学版), 2015, 36(4): 527-531, 541.
ZHANG T R, YU T B, ZHAO H F, et al.Application of data mining technology in fault diagnosis of tunnel boring machine[J]. Journal of Northeastern University (natural science), 2015, 36(4): 527-531, 541.
[4] FAN H, SHAO S, ZHANG X, et al.Intelligent fault diagnosis of rolling bearing using FCM clustering of EMD-PWVD vibration images[J]. IEEE access, 2020, 8:145194-145206.
[5] BESSA I V D, PALHARES R M, D'ANGELO M F S V, et al. Data-driven fault detection and isolation scheme for a wind turbine benchmark[J]. Renewable energy, 2016, 87:634-645.
[6] LYU G, CHENG H, ZHAN H, et al.Fault diagnosis of power transformer based on multi-layer SVM classifier[J]. Proceedings of electric power system & automation, 2005, 75(1): 9-15.
[7] 石鑫, 朱永利, 萨初日拉, 等. 基于深度信念网络的电力变压器故障分类建模[J]. 电力系统保护与控制, 2016, 44(1): 71-76.
SHI X, ZHU Y L, SACHURILA, et al. Power transformer fault classifying model based on deep belief network[J]. Power system protection and control, 2016, 44(1): 71-76.
[8] 张秦梫, 宋辉, 姜勇, 等. 基于OS-ELM的变压器局部放电模式识别[J]. 高电压技术, 2018, 44(4): 1122-1130.
ZHANG Q Q, SONG H, JIANG Y, et al.Partial discharge pattern recognition of transformer based on OS-ELM[J]. High voltage engineering, 2018, 44(4): 1122-1130.
[9] NOORI M, EFFATNEJAD R, HAJIHOSSEINI P.Using dissolved gas analysis results to detect and isolate the internal faults ofpower transformers by applying a fuzzy logic method[J]. IET generation, transmission & distribution, 2017, 11(10): 2721-2729.
[10] 贾亚飞, 朱永利, 高佳程, 等. 基于样本加权FCM聚类的未知类别局部放电信号识别[J]. 电力自动化设备, 2018, 38(12): 107-112.
JIA Y F, ZHU Y L, GAO J C,et al.Recognition of unknown partial discharge signals based on sample- weighted FCM clustering[J]. Electric power automation equipment, 2018, 38(12): 107-112.
[11] 肖满生, 张龙信, 张晓丽, 等. 一种改进的区间型不确定数据模糊聚类方法[J]. 电子与信息学报, 2020, 42(8): 1968-1974.
XIAO M S, ZHANG L X, ZHANG X L, et al.An improved fuzzy clustering method for interval uncertain data[J]. Journal of electronics and information technology, 2020, 42(8): 1968-1974.
[12] 孙鹤旭, 孙泽贤, 张靖轩. 基于并行模糊C-均值聚类的风电机组发电机故障诊断研究[J]. 太阳能学报, 2020, 41(3): 8-14.
SUN H X, SUN Z X, ZHANG J X.Fault diagnosis of wind turbine alternator based on parallel fuzzy c-means clustering algorithm[J]. Acta energiae solaris sinica, 2020, 41(3): 8-14.
[13] CHUAN L, MARIELA C, DIEGO C, et al.A comparison of fuzzy clustering algorithms for bearing fault diagnosis[J]. Journal of intelligent and fuzzy systems, 2018, 34(6): 1-16.
[14] WANG C, YANG H, MENG C.An efficient fault diagnosis strategy based on SVDD and fuzzy clustering for ground-based electronic equipment[C]//2019 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Dalian, China, 2019.
[15] 尹爱军, 王昱, 戴宗贤, 等. 基于变分自编码器的轴承健康状态评估[J]. 振动·测试与诊断, 2020, 40(5): 1011-1016, 1030.
YIN A J, WANG Y, DAI Z X, et al.Evaluation method of bearing health state based on variational auto encoder[J]. Vibration test and diagnosis, 2020, 40(5): 1011-1016, 1030.
PDF(1666 KB)

Accesses

Citation

Detail

Sections
Recommended

/