RESEARCH ON CONFIGURATION OF MULTI-ENERGY MICROGRID IN SMART PARK BASED ON TYPICAL SCENARIOS

Situ You, Zhou Lide, Chen Fengchao, Li Ming, Zhao Ailin, Zeng Ming

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (9) : 515-526.

PDF(1422 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1422 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (9) : 515-526. DOI: 10.19912/j.0254-0096.tynxb.2020-1235

RESEARCH ON CONFIGURATION OF MULTI-ENERGY MICROGRID IN SMART PARK BASED ON TYPICAL SCENARIOS

  • Situ You1, Zhou Lide1, Chen Fengchao1, Li Ming1, Zhao Ailin2, Zeng Ming2
Author information +
History +

Abstract

The multi-energy microgrid for smart zone is an important way to realize the different physical energy systems coupling and increase the proportion of renewable energy in energy consumption increasing. It is significance to formulate a reasonable multi-energy micro-grid configuration method for ensuring the investment returns and the multi-energy microgrid orderly development. In view of this, this paper takes the park level multi-energy microgrid as the research object, proposes to construct the multi-objective optimization model architecture of multi-energy microgrid configuration on the basis of using HMM to construct typical scene set to compress the historical data of the system, and uses the actual load data and distribution of a park to compare and analyze the results, advantages and disadvantages of two different configuration schemes under different scenario, and quantitatively the advantages of multi energy microgrid in reducing system emission intensity and system investment cost are described.

Key words

multi-objective optimization / intelligent park / micro-grid configuration / multi-energy coupling

Cite this article

Download Citations
Situ You, Zhou Lide, Chen Fengchao, Li Ming, Zhao Ailin, Zeng Ming. RESEARCH ON CONFIGURATION OF MULTI-ENERGY MICROGRID IN SMART PARK BASED ON TYPICAL SCENARIOS[J]. Acta Energiae Solaris Sinica. 2022, 43(9): 515-526 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1235

References

[1] 曾鸣. 构建综合能源系统[N]. 人民日报, 2018-04-09(7).
ZENG M. Building an integrated energy system[N]. People's Daily, 2018-04-09(7).
[2] WANG J X, ZHONG H W, MA Z M, et al.Review and prospect of integrated demand response in the multi-energy system[J]. Applied energy, 2017, 202(9): 772-782.
[3] 茆美琴, 丁勇, 王杨洋, 等. 微网——未来能源互联网系统中的 “有机细胞”[J]. 电力系统自动化, 2017, 41(19): 1-11.
MAO M Q, DING Y, WANG Y Y, et al.Micro-grid —The "organic cell" of future energy Internet system[J]. Power system automation, 2017, 41(19): 1-11.
[4] 程浩忠, 胡枭, 王莉, 等. 区域综合能源系统规划研究综述[J]. 电力系统自动化, 2019, 43(7): 2-13.
CHENG H Z, HU X, WANG L, et al.Review of regional comprehensive energy system planning[J]. Automation of electric power systems, 2019, 43(7): 2-13.
[5] 贾宏杰, 王丹, 徐宪东,等. 区域综合能源系统若干问题研究[J]. 电力系统自动化, 2015,39(7): 198-207.
JIA H J, WANG D, XU X D, et al.Research on some problems of regional integrated energy system[J]. Automation of electric power systems, 2015, 39(7): 198-207.
[6] 武赓, 王昊婧, 曾博, 等. 计及灵活热负荷的综合能源服务商购电策略[J]. 电力建设, 2019, 40(1): 34-43.
WU G, WANG H J, ZENG B, et al.Integrated power supply strategy with flexible thermal load[J]. Power construction, 2019, 40(1): 34-43.
[7] 王珺, 顾伟, 陆帅, 等. 结合热网模型的多区域综合能源系统协同规划[J]. 电力系统自动化, 2016, 40(15): 17-24.
WANG J, GU W, LU S, et al.Collaborative planning of multi-region integrated energy system based on heat network model[J]. Automation of electric power systems, 2016, 40(15): 17-24.
[8] YUN Y, ZHANG S J, XIAO Y H.An MILP (mixed integer linear programming) model for optimal design of district-scale distributed energy resource systems[J]. Energy, 2015, 90(11): 1901-1915.
[9] 黄国日, 刘伟佳, 文福栓, 等. 具有电转气装置的电-气混联综合能源系统的协同规划[J]. 电力建设, 2016, 37(9): 1-13.
HUANG G R, LIU W J, WEN F S, et al.Collaborative planning of integrated electric-gas hybrid energy system with power conversion device[J]. Power construction, 2016, 37(9): 1-13.
[10] 单福州, 李晓露, 宋燕敏, 等. 基于改进两阶段鲁棒优化的区域综合能源系统经济调度[J]. 电测与仪表, 2018, 55(23): 103-108.
SHAN F Z, LI X L, SONG Y M, et al.Economic scheduling of regional integrated energy system based on improved two-stage robust optimization[J]. Electric measurement and instrumentation, 2016, 55(23): 103-108.
[11] 权超, 董晓峰, 姜彤. 基于CCHP 耦合的电力、天然气区域综合能源系统优化规划[J]. 电网技术, 2018, 42(8):2456-2466.
QUAN C, DONG X F, JIANG T.Integrated energy system optimization planning of power and natural gas region based on CCHP coupling[J]. Grid technology, 2018, 42(8): 2456-2466.
[12] 闻旻, 刘育权, 胡枭, 等. 含分布式供能设备的综合能源系统规划评价[J]. 电测与仪表, 2018, 55(21): 68-74.
WEN M, LIU Y Q, HU X, et al.Planning evaluation of integrated energy system including distributed power supply equipment[J]. Electrical measurement and instrumentation, 2018, 55(21): 68-74.
[13] 1ALVARADO D C, ACHA S, SHAH N, et al. A Technology selection and operation(TSO) optimisation model for distributed energy systems: mathematical formulation and case study[J]. Applied energy, 2016, 180: 491-503.
[14] 曾红, 刘天琪, 何川, 等. 含电转气设备的气电互联综合能源系统多目标优化[J]. 电测与仪表, 2019, 56(8): 99-107.
ZENG H, LIU T Q, HE C, et al.Multi-objective optimization of gas-electric interconnection integrated energy system with electric power conversion equipment[J]. Electric measurement and instrumentation, 2019, 56(8): 99-107.
[15] 周守军. 基于管网动态模型的城市集中供热系统参数预测及运行优化研究[D]. 济南: 山东大学, 2012.
ZHOU S J.Research on parameter prediction and operation optimization of urban central heating system based on network dynamic model[D]. Ji'nan: Shandong University, 2012.
[16] EHSAN A, YANG Q.Scenario-based investment planning of isolated multi-energy microgrids considering electricity, heating and cooling demand[J]. Applied energy, 2019, 235(1): 1277-1288.
[17] NOJAVAN S, MAJIDI M, NAJAFI-GHALELOU A, et al.A cost-emission model for fuel cell/PV/battery hybrid energy system in the presence of demand response program: ε-constraint method and fuzzy satisfying approach[J]. Energy conversion & management, 2017, 138(4): 383-392.
PDF(1422 KB)

Accesses

Citation

Detail

Sections
Recommended

/