SYSTEM RELIABILITY ANALYSIS OF MEGAWATT WIND TURBINE STRUCTURES WITH PRINCIPLE OF MAXIMUM ENTROPY AND SAMPLE-BASED FRACTIONAL MOMENTS

Huang Desheng, Zhang Xufang, Sørensen John Dalsgaard

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (7) : 293-301.

PDF(1534 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1534 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (7) : 293-301. DOI: 10.19912/j.0254-0096.tynxb.2020-1241

SYSTEM RELIABILITY ANALYSIS OF MEGAWATT WIND TURBINE STRUCTURES WITH PRINCIPLE OF MAXIMUM ENTROPY AND SAMPLE-BASED FRACTIONAL MOMENTS

  • Huang Desheng1, Zhang Xufang1, Sørensen John Dalsgaard2
Author information +
History +

Abstract

This paper presents an effective approach for system reliability analysis of megawatt wind turbine structures with the principle of maximum entropy and sample-based fractional moments. To begin with, a probabilistic model for the long-term extreme-valued structural loads (e.g. the annual, the twenty- or fifty-year return period) is derived based on the order statistic theory and the three-parameter Weibull distribution. This is further used to define performance functions for the reliability analysis of wind blade and tower structures. With fractional moments estimated based on a small number of samples, probability distribution of the system performance function is recovered through the principle of maximum entropy (MaxEnt) with sample-based fractional moments (ME-SFM). In numerical examples, the structural performance functions are defined by bending moments of the blade and tower, whereas the dimensionless statistics reference to material strength are derived to model the system failure events. Numerical examples have shown that the predicted structural failure probability results provided by the proposed ME-SFM approach are in closed agreement with that of the Monte-Carlo simulation. The normal and extreme turbulence models significantly influence the system failure probability level, whereas the effect needs to be carefully evaluated by various wind load cases in the IEC 61400-1 standard.

Key words

wind turbines / maximum entropy method / probability distributions / turbulence models / reliability analysis

Cite this article

Download Citations
Huang Desheng, Zhang Xufang, Sørensen John Dalsgaard. SYSTEM RELIABILITY ANALYSIS OF MEGAWATT WIND TURBINE STRUCTURES WITH PRINCIPLE OF MAXIMUM ENTROPY AND SAMPLE-BASED FRACTIONAL MOMENTS[J]. Acta Energiae Solaris Sinica. 2022, 43(7): 293-301 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1241

References

[1] 夏云峰. 2019年全球新增风电装机超60 GW[J]. 风能, 2020, 122(4): 38-43.
XIA Y F.Global installed wind power capacity exceeds 60GW in 2019[J]. Wind energy, 2020, 122(4): 38-43.
[2] 李兴国, 金鑫, 何玉林. 基于神经网络的风力机动力学分析[J]. 振动与冲击, 2009, 28(8): 78-83.
LI X G, JIN X, HE Y L.Dynamic analysis of wind turbine based on ANN[J]. Journal of vibration and shock, 2009, 28(8): 78-83.
[3] MORIARTY P J, HOLLEY W E, BUTTERFIELD S.Effect of turbulence variation on extreme loads prediction for wind turbines[J]. Journal of solar energy engineering, 2013, 124(4): 278-287.
[4] International Electrotechnical Commission.IEC 61400-1,Wind energy generation systems(Part 1): design requirements, international standard[S]. Geneva, Switzerland, 2019.
[5] 肖劲松, 张传经. 风力机叶片在拍打方向的载荷估计与可靠性分析[J]. 北京工业大学学报, 2005, 31(6): 617-621.
XIAO J S, ZHANG C J.Load estimation and reliability analysis of wind turbine’s blade in flap-wise[J]. Journal of Beijing University of Technology, 2005, 31(6): 617-621.
[6] 欧阳华, 巫发明, 王靛, 等. 湍流强度对兆瓦级风电机组的影响[J]. 大功率变流技术, 2013(3): 82-86.
OU Y H, WU F M, WANG D, et al.Effect of turbulence intensity on megawatt wind turbines[J]. Control and information technology, 2013(3): 82-86.
[7] 吴佳梁, 王广良, 魏振山. 风力机可靠性工程[M]. 北京: 化学工业出版社, 2011: 98-152.
WU J L, WANG G L, WEI Z S.Wind turbine reliability engineering[M]. Beijing: Chemical Industry Press, 2011: 98-152.
[8] 李垚, 朱才朝, 陶友传, 等. 风电机组可靠性研究现状与发展趋势[J]. 中国机械工程, 2017, 28(9): 1125-1133.
LI Y, ZHU C C, TAO Y C, et al.Research status and development tendency of wind turbine reliability[J]. China mechanical engineering, 2017, 28(9): 1125-1133.
[9] 张林伟, 梁湿, 杨峰, 等. 极端阵风条件下大型风力机叶片极限载荷研究[J]. 太阳能学报, 2016, 37(6): 1573-1578.
ZHANG L W, LIANG S, YANG F, et al.Extreme load analysis of large scale wind turbine blade under extreme gust condition[J]. Acta energiae solaris sinica. 2016, 37(6): 1573-1578.
[10] ABDALLAH I, NATARAJAN A, SØRENSEN J D. Influence of the control system on wind turbine loads during power production in extreme turbulence: Structural reliability[J]. Renewable energy, 2016, 87: 464-477.
[11] 刘旺玉, 张海全, 曾琳. 基于响应面法的仿生风力机叶片可靠性分析[J]. 太阳能学报, 2010, 31(9): 1204-1208.
LIU W Y, ZHANG H Q, ZENG L.Reliability analysis of wind turbine blade based on bionic design[J]. Acta energiae solaris sinica, 2010, 31(9): 1204-1208.
[12] 秦大同, 周志刚, 杨军, 等. 随机风载作用下风力发电机齿轮传动系统动态可靠性分析[J]. 机械工程学报, 2012, 48(3): 1-8.
QIN D T, ZHOU Z G, YANG J, et al.Time-dependent reliability analysis of gear transmission system of wind turbine under stochastic wind load[J]. Journal of mechanical engineering, 2012, 48(3): 1-8.
[13] 刘波, 安宗文. 考虑零件寿命相关的风电齿轮箱可靠性分析[J]. 机械工程学报, 2015, 51(10): 164-171.
LIU B, AN Z W.System reliability analysis of wind turbine gearbox considering component life dependency[J]. Journal of mechanical engineering, 2015, 51(10): 164-171.
[14] 周志刚, 徐芳. 考虑强度退化和失效相关性的风电齿轮传动系统动态可靠性分析[J]. 机械工程学报, 2016, 52(11): 80-87.
ZHOU Z G, XU F.Dynamic reliability analysis of gear transmission system of wind turbine considering strength degradation and dependent failure[J]. Journal of mechanical engineering, 2016, 52(11): 80-87.
[15] 寇海霞, 安宗文, 刘波, 等. 基于贝叶斯网络的风电齿轮箱可靠性分析[J]. 兰州理工大学学报, 2016, 42(1): 40-45.
KOU H X, AN Z W, LIU B, et al.Reliability analysis of wind turbine gearbox based on Bayesian network[J]. Journal of Lanzhou University of Technology, 2016, 42(1): 40-45.
[16] 张旭方, PANDEY M D, 张义民. 结构随机响应计算的一种数值方法[J]. 中国科学: 技术科学, 2012, 42(1): 103-114.
ZHANG X F, PANDEY M D, ZHANG Y M.A numerical method for calculating the random response of structures[J]. Scientia sinica technologica, 2012, 42(1): 103-114.
[17] GZYL H, TAGLIANI A.Hausdorff moment problem and fractional moments[J]. Applied mathematics and computation, 2010, 216(11): 3319-3328.
[18] 段振云, 刘桐, 陈雷, 等. 极限载荷外推的概率分布与拟合方法研究[J]. 太阳能学报, 2014, 35(11): 2320-2326.
DUAN Z Y, LIU T, CHEN L, et al.Study on the probability distribution and fitting method of extrapolation extreme load[J]. Acta energiae solaris sinica, 2014, 35(11): 2320-2326.
[19] NATARAJAN A, HOLLEY W E, PENMATSA R, et al.Identification of contemporaneous component loading for extrapolated primary loads in wind turbines[J]. Wind energy, 2008, 11(6): 577-587.
[20] 赵明伟, 顾明. 基于r个最大次序统计量模型的极值风压估算[J]. 力学学报, 2010, 42(6): 1074-1082.
ZHAO M W, GU M.Extreme wind pressure estimation based on the r largest order statistics model[J]. Chinese journal of theoretical and applied mechanics, 2010, 42(6): 1074-1082.
[21] SØRENSEN J D, TOFT H S. Probabilistic design of wind turbines[J]. Energies, 2010, 3(2): 241-257.
[22] RONOLD K O, LARSEN G C.Reliability-based design of wind-turbine rotor blades against failure in ultimate loading[J]. Engineering structures, 2000, 22(6): 565-574.
[23] MEAD L R, PAPANICOLAOU N.Maximum entropy in the problem of moments[J]. Journal of mathematical physics, 1984, 25(8): 2404-2417.
PDF(1534 KB)

Accesses

Citation

Detail

Sections
Recommended

/