FREE VORTEX WAKE MODEL FOR H-SHAPED VERTICAL AXIS WIND TURBINES CONSIDERING DYNAMIC STALL EFFECT AND STRUTS LOSS

Feng Guoying, Zhang Shoubin

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (6) : 169-175.

PDF(1847 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1847 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (6) : 169-175. DOI: 10.19912/j.0254-0096.tynxb.2020-1259

FREE VORTEX WAKE MODEL FOR H-SHAPED VERTICAL AXIS WIND TURBINES CONSIDERING DYNAMIC STALL EFFECT AND STRUTS LOSS

  • Feng Guoying1, Zhang Shoubin2
Author information +
History +

Abstract

This paper presents the results of the power performance prediction of H-shaped vertical axis wind turbines using a lifting-line free vortex wake model cooperating with the Leishman-Beddoes (LB) dynamic stall model and semi-empirical equations accounting for strut loss. The power performance curves of two turbines with different diameter and solidity are compared with measurements. It is shown that the dynamic stall effect is obvious when tip speed ratio is less than 4. In general, the strut loss increases with tip speed ratio, the maximum value is 60% and 35% respectively for two turbines. For H-shaped wind turbines with low solidity, the model can give a good prediction of the power performance, while for H-shaped wind turbines with high solidity, the model improved.

Key words

vertical axis wind turbines / free vortex wake model / strut loss / dynamic stall model

Cite this article

Download Citations
Feng Guoying, Zhang Shoubin. FREE VORTEX WAKE MODEL FOR H-SHAPED VERTICAL AXIS WIND TURBINES CONSIDERING DYNAMIC STALL EFFECT AND STRUTS LOSS[J]. Acta Energiae Solaris Sinica. 2022, 43(6): 169-175 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1259

References

[1] PARASCHIVOIU I. Wind turbine design: with emphasis on darrieus concept[M]. Chapter 6. Montreal: Presses Internationales Polytechnique, 2002,.
[2] HAUPTMANN S, BULK M, SCHÖN L, et al. Comparison of the lifting-line free vortex wake method and the blade-element-momentum theory regarding the simulated loads of multi-MW wind turbines[J/OL]. Journal of physics: Conference Series, The Science of Making Torque from Wind ,IOP Publishing, 2014. https://iopscience.iop.org/article/10.1088/1742-6596/555/1/012050/pdf.
[3] STRICKLAND J H, WEBSTER B T, Nguyen T.A vortex model of the Darrieus turbine: An analytical and experimental study[J]. Journal of fluids engineering, 1979, 101(4): 500-505.
[4] BHAGWAT M J, LEISHMAN J G.Stability, consistency and convergence of time-marching free-vortex rotor wake algorithms[J]. Journal of the American helicopter society, 2001, 46(1): 59-71.
[5] GUPTA S.Development of a time-accurate viscous Lagrangian vortex wake model for wind turbine applications[D]. College Park : University of Maryland, 2006.
[6] WInDS, Wake induced dynamics simulator, software package[EB/OL]. https://www.umass.edu/windenergy/research/software/WInDS.2020-10-20.
[7] FERREIRA C S.The near wake of the VAWT[D]. Delft: Aerospace engineering, Delft University of Technology, 2009.
[8] PEREIRA R, SCHEPERS G, PAVEL M D.Validation of the Beddoes-Leishman dynamic stall model for horizontal axis wind turbines using MEXICO data[J]. Wind energy, 2013, 16(2): 207-219.
[9] LEISHMAN J G, BEDDOES T S.A semi-empirical model for dynamic stall[J]. Journal of the American helicopter society, 1989, 34(3):3-17.
[10] Aerodyn(A design-code for aeroelastic simulations of horizontal axis wind turbine configurations)[EB/OL]. https://nwtc.nrel.gov/AeroDyn.2020-10-25.
[11] PIERCE K, HANSEN A C.Prediction of wind turbine rotor loads using the Beddoes-Leishman model for dynamic stall[J]. Journal of solar energy engineering, 1995, 117(3): 200-204.
[12] 许波峰, 刘冰冰, 冯俊恒,等. 自由涡尾迹方法中涡核尺寸对风力机气动计算的影响[J]. 力学学报, 2019, 51(5):1530-1537.
XU B F, LIU B B, FENG J H, et al.Influence of vortex core size on aerodynamic calculation of wind turbine in free vortex wake method[J]. Chinese journal of theoretical and applied mechanics, 2019, 51(5): 1530-1537.
[13] HOERNER S F. Fluid dynamic drag[M]. Midland Park:[S.N.].1965, 6/1-6/6.
[14] SHELDAHL R E, KLIMAS P C, FELTZ L V.Aerodynamic performance of a 5-metre-diameter Darrieus turbine with extruded aluminum NACA-0015 blades[R]. Albuquerque: Sandia national laboratories, 1980, 40-45.
[15] KJELLIN J, BÜLOW F, ERIKSSON S, et al. Power coefficient measurement on a 12 kW straight bladed vertical axis wind turbine[J]. Renewable energy, 2011, 36(11): 3050-3053.
[16] MC-LAREN K, TULLIS S, ZIADA S. Computational fluid dynamics simulation of the aerodynamics of a high solidity, small-scale vertical axis wind turbine[J]. Wind energy, 2012, 15, (3): 349-361.
[17] MCLAREN K.A numerical and experimental study of unsteady loading of high solidity vertical axis wind turbines[D]. Hamilton: Mechanical Engineering, McMaster University, 2011.
[18] SIDDIQUI M S, DURRANI N, AKHTAR I.Numerical study to quantify the effects of struts and central hub on the performance of a three dimensional vertical axis wind turbine using sliding mesh[C]//ASME 2013 Power Conference, Boston, MD, USA, 2013.
PDF(1847 KB)

Accesses

Citation

Detail

Sections
Recommended

/