MODELING AND SIMULATION OF FLUIDIZED BED SOLID PARTICLE/sCO2 HEAT EXCHANGER OF sCO2 SOLAR THERMAL POWER PLANT

Yang Yihui, Yu Qiang, Wang Zhifeng, Bai Fengwu

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (8) : 195-203.

PDF(1868 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1868 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (8) : 195-203. DOI: 10.19912/j.0254-0096.tynxb.2020-1308

MODELING AND SIMULATION OF FLUIDIZED BED SOLID PARTICLE/sCO2 HEAT EXCHANGER OF sCO2 SOLAR THERMAL POWER PLANT

  • Yang Yihui, Yu Qiang, Wang Zhifeng, Bai Fengwu
Author information +
History +

Abstract

In order to study the heat transfer characteristics under different operating conditions, a model of fluidized-bed solid particle/sCO2 heat exchanger is established by using the multi-section lumped parameter method in this paper, and the dynamic characteristics of the heat transfer system under the disturbances of different input variables are studied. Besides, the sensitivity of system performance to the key parameters is also analyzed. The results show that the disturbance of inlet temperature of the heat exchange system has a large influence on the outlet temperature of the heat exchanger, while the mass flow rate on the input side has a small influence; Small tube dimension and low tube number are easy to obtain a higher heat transfer coefficient for sCO2 side. In addition, the small particle size and the lower fluidizing-gas velocity are conducive to the improvement of the particle-side heat transfer coefficient under the minimum fluidization condition.

Key words

solar thermal power / solid particle / sCO2 / heat exchanger / lumped parameter method

Cite this article

Download Citations
Yang Yihui, Yu Qiang, Wang Zhifeng, Bai Fengwu. MODELING AND SIMULATION OF FLUIDIZED BED SOLID PARTICLE/sCO2 HEAT EXCHANGER OF sCO2 SOLAR THERMAL POWER PLANT[J]. Acta Energiae Solaris Sinica. 2022, 43(8): 195-203 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1308

References

[1] 杨天锋, 陈金利, 杨嘉敏, 等. 基于太阳能布雷顿循环的多能互补发电系统动态特性研究[J]. 太阳能学报, 2021, 42(11): 193-200.
YANG T F, CHEN J L, YANG J M, et al.Study on dynamic characteristics of multi-energy system based on solar Brayton cycle[J]. Acta energiae solaris sinica, 2021, 42(11): 193-200.
[2] 裘闰超. 基于超临界CO2布雷顿循环的塔式太阳能光热系统模拟研究[D]. 杭州: 浙江大学, 2018.
QIU R C.Simulation study on solar power tower system based on supercritical CO2 Brayton cycle[D]. Hangzhou:Zhejiang University, 2018.
[3] 曹传胜. 塔式太阳能热发电站性能的影响因素研究[J]. 太阳能学报, 2020, 41(10): 223-228.
CAO C S.Investigation of influence factors on performance of solar tower power station[J]. Acta energiae solaris sinica, 2020, 41(10): 223-228.
[4] ALBRECHT K, HO C K.Heat transfer models of moving packed-bed particle-to-sCO2 heat exchangers[J]. Journal of solar energy engineering, 2018, 141: 1-10.
[5] GOMEZ-GARCIA F, GAUTHIER D, FLAMANT G.Design and performance of a multistage fluidised bed heat exchanger for particle-receiver solar power plants with storage[J]. Applied energy, 2017, 190: 510-523.
[6] FARSI A, DINCER I.Thermodynamic assessment of a hybrid particle-based concentrated solar power plant using fluidized bed heat exchanger[J]. Solar energy, 2019, 179: 236-248.
[7] 张一帆, 李红智, 杨玉, 等. 垂直上升加热管道内超临界二氧化碳流动不稳定性研究[J]. 热力发电, 2020, 49(10): 65-72.
ZHANG Y F, LI H Z, YANG Y, et al.Research on flow instability of supercritical carbon dioxide in a vertical upward heated tube[J]. Thermal power generation, 2020, 49(10): 65-72.
[8] 颜建国, 朱凤岭, 郭鹏程, 等. 超临界CO2在内凸管内对流传热强化试验研究[J]. 太阳能学报, 2020, 41(7): 244-250.
YAN J G, ZHU F L, GUO P C, et al.Experimental study on heat transfer enhancement of supercritical CO2 flowing in an inner convex tube[J]. Acta energiae solaris sinica, 2020, 41(7): 244-250.
[9] MARCHIONNI M, CHAI L, BIANCHI G, et al.Numerical modelling and performance maps of a printed circuit heat exchanger for use as recuperator in supercritical CO2 power cycles[J]. Energy procedia, 2019, 161: 472-479.
[10] MA Z W, MARTINEK J.Fluidized-bed heat transfer modeling for the development of particle/supercritical-CO2 heat exchanger[C]//International Conference on ASME International Conference on Energy Sustainability Collocated with the ASME Power Conference Joint with Icope, Charlotte, North Carolina, USA, 2017.
[11] BELL I H, WRONSKI J, QUOILIN S, et al.Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop[J]. Industrial and engineering chemistry research, 2014, 53(6): 2498-2508.
[12] HARRIOTT P, BARNSTONE L A.Heat transfer in fluidized beds[J]. Industrial and engineering chemistry, 1967, 59(4): 55-58.
[13] MYASNIKOV V P, ROZHDESTVENSKAYA M S.Heat transfer between a surface and a fluidized bed: consideration of pressure and temperature effects[J]. Journal of applied mechanics and technical physics, 1991, 9(6): 762-768.
[14] CHEN J C, GRACE J R, GOLRIZ M R.Heat transfer in fluidized beds: design methods[J]. Powder technology, 2005, 150: 123-132.
[15] THEODORE L B, LAVINE A S.Fundamentals of heat and mass transfer[M]. 8th ed. New York: John Wiley & Sons, 2015: 474-476.
PDF(1868 KB)

Accesses

Citation

Detail

Sections
Recommended

/