STUDY ON ELECTROMECHANICAL COUPLING DYNAMIC CHARACTERISTICS OF LARGE WIND TURBINE GEAR TRANSMISSION SYSTEM

Wei Jing, Guo Jianpeng, Zhang Shijie, Xu Ziyang, Yan Junhui, Ji Kefeng

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (8) : 300-308.

PDF(3049 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3049 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (8) : 300-308. DOI: 10.19912/j.0254-0096.tynxb.2020-1339

STUDY ON ELECTROMECHANICAL COUPLING DYNAMIC CHARACTERISTICS OF LARGE WIND TURBINE GEAR TRANSMISSION SYSTEM

  • Wei Jing1, Guo Jianpeng1, Zhang Shijie1, Xu Ziyang1, Yan Junhui2, Ji Kefeng2
Author information +
History +

Abstract

Aiming at the problem of simplifying the electrical system in the dynamic research of flexible gearbox of wind turbine, a wind turbine model with detailed electrical system and flexible transmission chain is established by taking an 8 MW permanent magnet synchronous wind turbine as the research object. Based on the model, the influence of electrical system on the dynamic characteristics of wind turbine gearbox, such as mesh stiffness, dynamic contact stress and vibration acceleration is explored. The results show that, the transmission chain will be affected by the electromagnetic damping of the generator which will slow down the response speed, but the meshing stiffness and contact stress fluctuation of each gear will be reduced. The high frequency component of angular acceleration and x-direction vibration acceleration of the gearbox are suppressed, so the vibration amplitude of the transmission chain is declined. When the wind speed change suddenly, the peak meshing force of high-speed gear decreases with the electrical system, which improves the wind turbines' ability of remaining stable.

Key words

wind turbines / gears / flexible structure / electromechanical coupling / dynamic response

Cite this article

Download Citations
Wei Jing, Guo Jianpeng, Zhang Shijie, Xu Ziyang, Yan Junhui, Ji Kefeng. STUDY ON ELECTROMECHANICAL COUPLING DYNAMIC CHARACTERISTICS OF LARGE WIND TURBINE GEAR TRANSMISSION SYSTEM[J]. Acta Energiae Solaris Sinica. 2022, 43(8): 300-308 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1339

References

[1] ALVAREZ E J, RIBARIC A P.An improved-accuracy method for fatigue load analysis of wind turbine gearbox based on SCADA[J]. Renewable energy, 2017, 115: 391-399.
[2] 谭建军, 朱才朝, 宋朝省, 等. 风电机组传动链刚柔耦合动态特性分析[J]. 太阳能学报, 2020, 41(7): 341-351.
TAN J J, ZHU C C, SONG C X, et al.Dynamic characteristics analysis of wind turbine drivetrain with rigid-flexible coupling[J]. Acta energiae solaris sinica, 2020, 41(7): 341-351.
[3] LI Z W, WEN B R, WEI K X, et al.Flexible dynamic modelling and analysis of drive train for offshore floating wind turbine[J]. Renewable energy, 2020, 145: 1292-1305.
[4] 杜静, 秦月, 李成武. 风力发电机组传动链动力学建模与仿真分析[J]. 太阳能学报, 2014, 35(10): 1950-1957.
DU J, QIN Y, LI C W.Dynamics modeling and simulation analysis of wind turbine drive train[J]. Acta energiae solaris sinica, 2014, 35(10): 1950-1957.
[5] 金鑫, 钟翔, 谢双义, 等. 大型风力发电机转矩 LQR 控制及载荷优化[J]. 电力系统保护与控制, 2013, 41(6): 93-98.
JIN X, ZHONG X, XIE S Y, et al.Load reduction for large-scale wind turbine based on LQR torque control[J]. Power system protection and control, 2013, 41(6): 93-98.
[6] 杨文韬, 耿华, 肖帅, 等. 最大功率跟踪控制下大型风电机组的轴系扭振分析及抑制[J]. 清华大学学报(自然科学版), 2015, 55(11): 1171-1177.
YANG W T, GENG H, XIAO S, et al.Analysis and suppression for shaft torsional vibrations in large wind turbines with MPPT control[J]. Journal of Tsinghua University(science and technology), 2015, 55(11): 1171-1177.
[7] 苗风麟. 双馈风电机组机电耦合影响及载荷主动控制研究[D]. 北京: 北京交通大学, 2017.
MAIO F L.Electromechanical coupling effect in DFIG-wind turbine and active control for load reduction[D]. Beijing: Beijing Jiaotong University, 2017.
[8] 林莹莹. 直驱永磁风力发电机无位置传感器直接转矩控制的研究[D]. 福州: 福州大学, 2014.
LIN Y Y.Study on sensorless direct torque control for Direct-driven permanent magnet synchronous wind power generator [D]. Fuzhou: Fuzhou University, 2014.
[9] 佘峰. 永磁直驱式风力发电系统中最大功率控制的仿真研究[D]. 长沙: 湖南大学, 2009.
SHE F.Simulation of maximum power control for Direct-drive wind power system with PMSG[D]. Changsha: Hunan University, 2009.
[10] 陈伯时, 陈敏逊. 交流调速系统[M]. 北京: 北京机械工业出版社, 2005: 78-198.
CHEN B S, CHEN M X.AC drive system[M]. Beijing: China Machine Press, 2005: 78-198.
[11] 邓仁燕, 唐娟, 夏炎, 等. 基于前馈补偿的永磁同步电机电流环解耦控制[J]. 电力电子技术, 2013, 47(6): 68-70.
DENG R Y, TANG J, XIA Y, et al.Decoupling control of current loops for permanent magnet synchronous motor based on feedforward compensation[J]. Power electronics, 2013, 47(6): 68-70.
[12] SIMEON B.On Lagrange multipliers in flexible multibody dynamics[J]. Computer methods in applied mechanics and engineering, 2006, 195(50-51): 6993-7005.
[13] 王开宇. 基于多点约束的多尺度建模方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
WANG K Y.Research of multi-scale modeling mehod based on multi-point constraints[D]. Harbin: Harbin Institute of Technology, 2016.
[14] 屈梁生, 何正嘉. 机械故障诊断学[M]. 上海: 上海科学技术出版社, 1986.
QU L S, HE Z J.Introduction to machine fault diagnosis[M]. Shanghai: Shanghai Scientific & Technical Publishers, 1986.
PDF(3049 KB)

Accesses

Citation

Detail

Sections
Recommended

/