BIRD DROPPINGS COVERAGE DETECTION OF PHOTOVOLTAIC MODULE BASED ON TRANSFER LEARNING

Li Qiong, Wu Wenbao, Liu Bin, Liu Jun

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (2) : 233-237.

PDF(1756 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1756 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (2) : 233-237. DOI: 10.19912/j.0254-0096.tynxb.2020-1398

BIRD DROPPINGS COVERAGE DETECTION OF PHOTOVOLTAIC MODULE BASED ON TRANSFER LEARNING

  • Li Qiong1, Wu Wenbao2, Liu Bin1, Liu Jun1
Author information +
History +

Abstract

In this paper, based on the visible light image acquisition of photovoltaic(PV) panel by using unmanned aerial vehicle, a bird droppings detection method of photovoltaic panel based on transfer learning is proposed. Firstly, the boundary of PV panel is selected based on Mask-RCNN, and then the bird droppings defect detection model of PV panel was constructed by using transfer learning strategy to realize intelligent detection of bird droppings. Using the above method, the detection accuracy of bird droppings coverage of PV panel is 96.75%.

Key words

transfer learning / photovoltaic modules / Mask-RCNN / defect detection

Cite this article

Download Citations
Li Qiong, Wu Wenbao, Liu Bin, Liu Jun. BIRD DROPPINGS COVERAGE DETECTION OF PHOTOVOLTAIC MODULE BASED ON TRANSFER LEARNING[J]. Acta Energiae Solaris Sinica. 2022, 43(2): 233-237 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1398

References

[1] NICCOLAI A, GANDELLI A, GRIMACCIA F, et al.Overview on photovoltaic inspections procedure by means of unmanned aerial vehicles[C]//2019 IEEE Power Tech, Milan, 2019.
[2] 徐晶, 韩军, 童志刚, 等. 一种无人机图像的铁塔上鸟巢检测方法[J]. 计算机工程与应用, 2017, 53(6): 231-235.
XU J, HAN J, TONG Z G, et al.A bird nest detection method based on UAV image[J]. Computer engineering and application, 2017, 53(6): 231-235.
[3] 宋伟, 左丹, 邓邦飞, 等. 高压输电线防震锤锈蚀缺陷检测[J]. 仪器仪表学报, 2016, 37(S1): 113-117.
SONG W, ZUO D, ZHANG H B, et al.Corrosion defect detection of earthquake hammer for high voltage transmission line[J]. Chinese journal of scientific instrument, 2016, 37(S1): 113-117.
[4] WAN G W, WANG Y F, HAN J, et al.Recognition and drop-off detection of insulator based on aerial image[C]//International Symposium on Computational Intelligence and Design, IEEE, Hangzhou, China, 2017: 162-167.
[5] 王亚丽. 基于红外热成像的太阳能板缺陷检测[D]. 杭州: 中国计量学院, 2015.
WANG Y L.Solar panel defect detection based on infrared thermal imaging[D]. Hangzhou: Institute of Metrology, 2015.
[6] GIRSHICK R, DONAHUE J, DARRELL T, et al.Region-based convolutional networks for accurate object detection[J]. IEEE transactions on pattern analysis and machine intelligence, 2016, 38(1): 142-158.
[7] HE K M, ZHANG X Y, REN S Q.Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligences, 2015, 37(9): 1904-1916.
[8] REN S, HE K M, GIRSHICK R, et al.Faster RCNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 39(6): 1137-1149.
[9] 田晓杰, 程耀瑜, 常国立. 基于深度学习优化SSD算法的硅片隐裂检测识别[J]. 机床与液压, 2019, 47(1): 36-40, 60.
TIAN X J, CHENG Y Y, CHANG G L.Silicon chip stealth detection and identification based on deep learning optimization SSD algorithm[J]. Machine tools and hydraulics, 2019, 47(1): 36-40, 60.
[10] 王宪保, 李洁, 姚明海, 等. 基于深度学习的太阳能电池片表面缺陷检测方法[J]. 模式识别与人工智能, 2014, 27(6): 517-523.
WANG X B, LI J, YAO H M, et al.Deep learning-based solar cell surface defect detection methods for pattern recognition and artificial intelligence[J]. Pattern recognition and artificial intelligence, 2014, 27(6): 517-523
[11] 车曦. 基于红外图像识别的光伏组件热斑故障检测方法研究[D]. 重庆: 重庆大学, 2015.
CHE X.Study on the detection method of thermal spot failure of photovoltaic modules based on infrared image recognition[D]. Chongqing: Chongqing University, 2015.
[12] 郭梦浩, 徐红伟. 基于Faster RCNN的红外热图像热斑缺陷检测研究[J]. 计算机系统应用, 2019, 28(11): 265-270.
GUO M H, XU H W.Research on thermal spot defect detection in infrared thermal images based on Fast RCNN[J]. Computer systems & applications, 2019, 28(11): 265-270.
PDF(1756 KB)

Accesses

Citation

Detail

Sections
Recommended

/