IMPROVED FINITE CONTROL SET MODEL PREDICTIVE CONTROL OF THREE-LEVEL GRID-CONNECTED INVERTER

Hong Jianfeng, Zhang Xing, Cao Renxian, Xu Chengjun

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (8) : 67-74.

PDF(2537 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2537 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (8) : 67-74. DOI: 10.19912/j.0254-0096.tynxb.2020-1406

IMPROVED FINITE CONTROL SET MODEL PREDICTIVE CONTROL OF THREE-LEVEL GRID-CONNECTED INVERTER

  • Hong Jianfeng1,2, Zhang Xing1,2, Cao Renxian1,2, Xu Chengjun1,2
Author information +
History +

Abstract

The traditional finite control set model predictive control(FCSMPC) based on Lyapunov law will lead to poor robustness of its control method when the parameters are not matched, and even lead to system instability in severe cases. In response to the above problems, this paper theoretically analyzes the parameter robustness of the traditional finite control set model predictive control based on Lyapunov law in detail, and introduces the Luenberger observer to estimate the interference caused by the parameter mismatch. And then the interference is compensated to the finite control set model predictive control based on Lyapunov law, the robustness and stability of the control system are improved. In addition, this paper also considers the delay compensation problem and the low switching frequency problem in the finite control set model predictive control. The proposed control scheme is implemented on a three-level grid-connected inverter, experimental platform by using DSP TMS320f28377 software and the effectiveness of the proposed method is verified by experiments.

Key words

grid-connected inverter / predictive control / robust / three-level

Cite this article

Download Citations
Hong Jianfeng, Zhang Xing, Cao Renxian, Xu Chengjun. IMPROVED FINITE CONTROL SET MODEL PREDICTIVE CONTROL OF THREE-LEVEL GRID-CONNECTED INVERTER[J]. Acta Energiae Solaris Sinica. 2022, 43(8): 67-74 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1406

References

[1] RODRIGUEZ J, LAI J S, PENG F Z.Multilevel inverters: a survey of topologies, controls, and applications[J]. IEEE transactions on industrial electronics, 2002, 49(4): 724-738.
[2] 张志坚, 荆龙, 赵宇明, 等. 低开关频率对并网逆变器控制环节的影响及补偿方法[J]. 电力系统自动化, 2020, 44(17): 111-119.
ZHANG Z J, JING L, ZHAO Y M, et al.Effect of low switching frequency on control link of grid-connected inverter and compensation method[J]. Automation of electric power systems, 2020, 44(17): 111-119.
[3] VAZQUEZ S.Model predictive control: a review of its applications in power electronics[J]. IEEE industrial electronics magazine, 2014, 8(1): 16-31.
[4] VAZQUEZ S, LEON J I, FRANQUELO L G, et al.Model predictive control: a review of its applications in power electronics[J]. IEEE industrial electronics magazine, 2014, 8(1): 16-31.
[5] VAZQUEZ S, RODRIGUEZ J, RIVERA M, et al.Model predictive control for power converters and drives: advances and trends[J]. IEEE transactions on industrial electronics, 2017, 64(2): 935-947.
[6] 张晓, 谭力,鲜嘉恒, 等. LCL并网逆变器预测电流控制算法[J]. 电工技术学报, 2019, 34(A01): 189-201.
ZHANG X, TAN L, XIAN J H, et al.Predictive current control algorithm for grid-connected inverter with LCL filter[J]. Transactions of China Electrotechnical Society, 2019, 34(A01): 189-201.
[7] 刘兴杰, 王伟, 郭九旺, 等. 永磁直驱风电机组有功功率预测控制方法研究[J]. 太阳能学报, 2018, 39(1): 210-217.
LIU X J, WANG W, GUO J W, et al.Research on predictive control of active power for direct driven permanent magnet wind turbine generators[J]. Acta energiae solaris sinica, 2018, 39(1): 210-217.
[8] 金楠, 胡石阳, 崔光照, 等. 光伏并网逆变器有限状态模型预测电流控制[J]. 中国电机工程学报, 2015, 35(S1): 190-196.
JIN N, HU S Y, CUI G Z, et al.Finite state model predictive current control of grid-connected inverters for PV systems[J]. Proceedings of the CSEE, 2015, 35(S1): 190-196.
[9] 李亚宁, 高晓红. 功率前馈的T型三相三电平光伏并网逆变器快速有限集模型预测控制[J]. 太阳能学报, 2019, 40(11): 3062-3069.
LI Y N, GAO X H.Fast FCSMPC for T-type three phase three level grid connected inverters based on power feed-forward control[J]. Acta energiae solaris sinica, 2019, 40(11): 3062-3069.
[10] 徐艳平, 王极兵, 周钦, 等. 永磁同步电动机双优化三矢量模型预测电流控制[J]. 中国电机工程学报, 2018, 38(6): 1857-1864.
XU Y P, WANG J B, ZHOU Q, et al.Double optimization three-vector-based model predictive current control for permanent magnet synchronous motors[J]. Proceedings of the CSEE, 2018, 38(6): 1857-1864.
[11] LIU X, WANG D, PENG Z H.Cascade-free fuzzy finite-control-set model predictive control for nested neutral point-clamped converters with low switching frequency[J]. IEEE transactions on control systems technology, 2019, 27(5): 2237-2244.
[12] FALKOWSKI P, SIKORSKI A.Finite control set model predictive control for grid-connected AC-DC converters with LCL filter[J]. IEEE transactions on industrial electronics, 2018, 65(4): 2844-2852.
[13] KWAK S S, YOO S J, PARK J C.Finite control set predictive control based on Lyapunov function for three-phase voltage source inverters[J]. IET power electronics, 2014, 7(11): 2726-2732.
[14] AGUILERA R P, QUEVEDO D E.Predictive control of power converters: Designs with guaranteed performance[J]. IEEE transactions on industrial informatics, 2015, 11(1): 53-63.
[15] MATSUI N, MAKINO T, SATOH H.Autocompensation of torque ripple of direct drive motor by torque observer[J]. IEEE transactions on industry applications, 1993, 29(1): 187-194.
[16] KO J S, LEE J H, YOUN M J.Robust digital position control of brushless DC motor with adaptive load torque observer[J]. IEE proceedings-electric power applications, 1994, 141(2): 63-70.
[17] LUENBERGER D.Observers for multivariable systems[J]. IEEE transactions automatic control, 1966, 11: 190-197.
[18] FRANKLIN G F, POWELL J D, EMAMI N A.Feedback control of dynamic systems[M]. 4th Ed. Upper Saddle River: Prentice Holl, 2002.
[19] CORTES P, RODRIGUEZ J, SILVA C, et al.Delay compensation in model predictive current control of a three-phase inverter[J]. IEEE transactions on industrial electronics, 2012, 59(2): 1323-1325.
[20] ZHANG X G, ZHANG L, ZHANG Y C.Model predictive current control for PMSM drives with parameter robustness improvement[J]. IEEE transaction power electron, 2019, 34(2): 1645-1657.
PDF(2537 KB)

Accesses

Citation

Detail

Sections
Recommended

/