RESEARCH ON GROUPING MODEL OF HOURLY GLOBAL SOLAR RADIATION BASED ON GA-BP NEURAL NETWORK

Yu Ying, Chen Xiao, Jia Xiaoyu, Yang Liu

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (8) : 157-163.

PDF(2020 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2020 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (8) : 157-163. DOI: 10.19912/j.0254-0096.tynxb.2021-0015

RESEARCH ON GROUPING MODEL OF HOURLY GLOBAL SOLAR RADIATION BASED ON GA-BP NEURAL NETWORK

  • Yu Ying1, Chen Xiao1, Jia Xiaoyu1, Yang Liu2
Author information +
History +

Abstract

By analyzing the main factors affecting solar radiation, this paper proposes a grouping modeling method, which uses the solar altitude angle, season and clearness index as the indicators of data classification. The hourly meteorological data and radiation data for Lhasa and Xi'an are selected as examples. The hourly global radiation grouping models for solar altitude, seasons and weather are established respectively through BP neural network optimized by genetic algorithm (GA). The error variation rules of grouping model are revealed. The error of grouping models are compared with that of the AllData model further. The results show that the estimation error of the grouping model is reduced compared with the AllData model, and the estimation error of the weather grouping model is the smallest. The results of Xi'an's weather grouping model are better than those of Lhasa. Compared with the AllData model, the mean absolute percentage error (MAPE) and relative root mean square error (rRMSE) of Xi'an's weather grouping model is decreased by 3.96% and 4.18%, respectively. The results show that the grouping model can reduce the estimation error of hourly global solar radiation, and provide a reference for neural network as a method for estimating hourly global solar radiation.

Key words

solar energy / hourly global solar radiation / GA-BP neural network / grouping model / error analysis

Cite this article

Download Citations
Yu Ying, Chen Xiao, Jia Xiaoyu, Yang Liu. RESEARCH ON GROUPING MODEL OF HOURLY GLOBAL SOLAR RADIATION BASED ON GA-BP NEURAL NETWORK[J]. Acta Energiae Solaris Sinica. 2022, 43(8): 157-163 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0015

References

[1] 刘衍, 陈睿昕, 张沫岩, 等. 绿色住区设计参数对太阳辐射的影响研究[J]. 工业建筑, 2020, 50(7): 143-150.
LIU Y, CHEN R X, ZHANG M Y, et al.Research on the influence of green settlement design parameters on solar radiation[J]. Industrial construction, 2020, 50(7): 143-150.
[2] 曹其梦, 于瑛, 杨柳. 太阳逐时总辐射计算模型适用性分析——以我国部分地区为例[J]. 太阳能学报, 2018, 39(4): 917-924.
CAO Q M, YU Y, YANG L.Applicability analysis of hourly total solar radiation calculation model—taking some regions of China as example[J]. Acta energiae solaris sinica, 2018, 39(4): 917-924.
[3] 何知衡, 董浩, 王磊. 太阳辐射影响下的建筑经济保温厚度计算方法[J]. 干旱区资源与环境, 2019, 33(9): 108-115.
HE Z H, DONG J, WANG L.Study on the method for calculation of building economic insulation thickness under the influence of solar radiation[J]. Journal of arid land resources and environment, 2019, 33(9): 108-115.
[4] 朱叶青, 周军莉, 王乾坤. 建筑方案设计中的太阳辐射模拟研究[J]. 建筑节能, 2016, 44(9): 30-33, 83.
ZHU Y Q, ZHOU J L, WANG Q K.Simulation on solar radiation in building design[J]. Building energy efficiency, 2016, 44(9): 30-33, 83.
[5] 赵康, 桂雪晨, 葛坚. 高大空间中太阳辐射对热舒适的影响及室内参数设计[J]. 太阳能学报, 2019, 40(9): 2655-2662.
ZHAO K, GUI X C, GE J.Influence of solar radiation on thermal comfort in large spaces and corresponding design of indoor parameters[J]. Acta energiae solaris sinica, 2019, 40(9): 2655-2662.
[6] ZANG H, XU Q, BIAN H.Generation of typical solar radiation data for different climates of China[J]. Energy, 2012, 38(1): 236-248.
[7] LOGHMARI I, TIMOUMI Y, MESSADI A.Performance comparison of two global solar radiation models for spatial interpolation purposes[J]. Renewable and sustainable energy reviews, 2018, 82(1): 837-844.
[8] MEFTI A, ADANE A, BOUROUBI M Y.Satellite approach based on cloud cover classification: Estimation of hourly global solar radiation from meteosat images[J]. Energy conversion and management, 2008, 49(4): 652-659.
[9] JANJAI S, LAKSANABOONSONG J, NUNEZ M, et al.Development of a method for generating operational solar radiation maps from satellite data for a tropical environment[J]. Solar energy, 2005, 78(6): 739-751.
[10] MUNEER T, YOUNES S.The all-sky meteorological radiation model: proposed improvements[J]. Applied energy, 2006, 83(5): 436-450.
[11] WHILLIER A.The determination of hourly values of total solar radiation from daily summations[J]. Archiv Für meteorologie geophysik und bioklimatologie serie B, 1956, 7(2): 197-204.
[12] JAIN P C.Comparison of techniques for the estimation of daily global irradiation and a new technique for the estimation of hourly global irradiation[J]. Solar & wind technology, 1984, 1(2): 123-134.
[13] NEWELL T A.Simple models for hourly to daily radiation ratio correlations[J]. Solar energy, 1983, 31(3): 339-342.
[14] IBRAHIM I A, KHATIB T.A novel hybrid model for hourly global solar radiation prediction using random forests technique and firefly algorithm[J]. Energy conversion & management, 2017, 138(15): 413-425.
[15] KHATIB T, ELMENREICH W.A model for hourly solar radiation data generation from daily solar radiation data using a generalized regression artificial neural network[J]. International journal of photoenergy, 2015(3): 1-13.
[16] RUIZ L C, AMAYA D, RAMOS O L.Prediction of solar radiation through the anfis lgorithm[J]. Applied mechanics and materials, 2016, 823: 389-395.
[17] CHEN J, LI G.Evaluation of support vector machine for estimation of solar radiation from measured meteorological variables[J]. Theoretical and applied climatology, 2014, 115(3): 627-638.
[18] WANG Z, TIAN C, ZHU Q, et al.Hourly solar radiation forecasting using a Volterra-least squares support vector machine model combined with signal decomposition[J]. Energies, 2018, 11(1): 68.
[19] HASSAN M A, KHALIL A, KASEB S, et al.Exploring the potential of tree-based ensemble methods in solar radiation modeling[J]. Applied energy, 2017, 203: 897-916.
[20] YANG M Q, WANG X Y.Hourly solar radiation forecast based on k-NN nonparametric regression model[J]. Applied mechanics & materials, 2014, 571: 217-222.
[21] HUSSAIN S, ALALILI A.A hybrid solar radiation modeling approach using wavelet multiresolution analysis and artificial neural networks[J]. Applied energy, 2017, 208: 540-550.
[22] GASTóN-ROMEO M, LEON T, MALLOR F, et al. A morphological clustering method for daily solar radiation curves[J]. Solar energy, 2011, 85(9): 1824-1836.
[23] KOO C, LI W, CHA S H, et al.A novel estimation approach for the solar radiation potential with its complex spatial pattern via machine-learning techniques[J]. Renewable energy, 2019, 133: 575-592.
[24] GABALLA H, CHO S.Prediction of hourly solar radiation using temperature and humidity for real-time building energy simulation[J]. Journal of physics conference series, 2019, 1343(1): 012049.
[25] JALLAL M A, CHABAA S, ZEROUAL A.A new artificial multi-neural approach to estimate the hourly global solar radiation in a semi-arid climate site[J]. Theoretical and applied climatology, 2020, 139(3): 1261-1276.
[26] LI D H W, CHEN W, LI S, et al. Estimation of hourly global solar radiation using Multivariate Adaptive Regression Spline (MARS)-a case study of Hong Kong[J]. Energy, 2019, 186(1): 115857.
[27] 曹双华, 曹家枞. 太阳逐时总辐射混沌优化神经网络预测模型研究[J]. 太阳能学报, 2006, 27(2): 164-169.
CAO S H, CAO J Z.Study of chaos optimization neural networks for the forecast of hourly total solar irradiation[J]. Acta energiae solaris sinica, 2006, 27(2): 164-169.
[28] 成驰, 陈正洪, 张礼平, 等. 神经网络模型在逐时太阳辐射预测中应用[J]. 太阳能, 2012(3): 30-33.
CHENG C, CHEN Z H, ZHANG L P, et al.Application of neural network model in hourly solar radiation prediction[J]. Solar energy, 2012(3): 30-33.
[29] 刘大龙, 刘加平, 杨柳, 等. 以晴空指数为主要依据的太阳辐射分区[J]. 建筑科学, 2007(6): 9-11.
LIU D L, LIU J P, YANG L, et al.Clearness index based solar radiation distribution[J]. Building science, 2007(6): 9-11.
[30] 于瑛, 杨柳, 霍旭杰, 等. 日总辐射推算模型在中国的适用性研究[J]. 太阳能学报, 2018, 39(9): 2523-2529.
YU Y, YANG L, HU X J, et al.Analysis of daily global radiation estimation models applicability in China[J]. Acta energiae solaris sinica, 2018, 39(9): 2523-2529.
[31] YOUNES S, CLAYWELL R, MUNEER T.Quality control of solar radiation data: Present status and proposed new approaches[J]. Energy, 2005, 30(9): 1533-1549.
[32] POSADILLO R, LUQUE R L.Hourly distributions of the diffuse fraction of global solar irradiation in Córdoba(Spain)[J]. Energy conversion and management, 2009, 50(2): 223-231.
[33] 蒙炤臻, 林奕桐, 李仕强, 等. 自动站温度、雨量数据的质量控制方法和应用研究[J]. 气象研究与应用, 2014, 35(1): 99-103.
MENG Z Z, LIN Y T, LI S Q, et al.Quality control method and application research for temperature and rainfall data of automatic station[J]. Journal of meteorological research and application, 2014, 35(1): 99-103.
[34] 陈明. MATLAB神经网络原理与实例精解[M]. 北京: 清华大学出版社, 2013.
CHEN M.The principle and example of MATLAB neural network[M]. Beijing: Tsinghua University Press, 2013.
[35] 贾红, 张仁祖, 张佩, 等. 逐时太阳辐照度气候学预报模型研究[J]. 江苏农业科学, 2020, 48(11): 275-281.
JIA H, ZHANG R Z, ZHANG P, et al.Study on climatological prediction model of hourly solar irradiance[J]. Jiangsu agricultural sciences, 2020, 48(11): 275-281.
[36] 姚万祥, 李峥嵘, 李翠, 等. 各种天气状况下太阳辐射照度与太阳光照度关系[J]. 同济大学学报(自然科学版), 2013, 41(5): 784-787.
YAO W X, LI Z R, LI C, et al.Relationship between bolar radiance and solar illuminance under all sky types[J]. Journal of Tongji University (natural science), 2013, 41(5): 784-787.
PDF(2020 KB)

Accesses

Citation

Detail

Sections
Recommended

/