APPLICABILITY OF THREE REANALYSIS DATA IN ASSESSMENT OF SOLAR ENERGY RESOURCES IN CHINA

Wang Chuanhui, Shen Yanbo, Yao Jinfeng, Zhou Shunwu

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (8) : 164-173.

PDF(4473 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(4473 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (8) : 164-173. DOI: 10.19912/j.0254-0096.tynxb.2021-0039

APPLICABILITY OF THREE REANALYSIS DATA IN ASSESSMENT OF SOLAR ENERGY RESOURCES IN CHINA

  • Wang Chuanhui1, Shen Yanbo2, Yao Jinfeng2, Zhou Shunwu3
Author information +
History +

Abstract

Based on the monthly global horizontal irradiance(GHI) observation data of 53 stations from 1979 to 2019, the solar energy resources distribution of China is divided into four regions (the north, the southwest, the middle and lower reaches of Yangtze River and the southeast) by using REOF method. Differences of GHI between NCEP/DOE, JRA55, ERA5 reanalysis data and observation data are analyzed under the perspective of solar energy resources. The results show that three kinds of reanalysis GHI data are all larger than that of observed on the ground, and those areas with the largest root mean square deviation (RMSE) and relative deviation (RE) are all located near 30°N, The consistency of interannual variation is that the southeast is better than the northwest. The ERA5 data is better than NCEP /DOE and JRA55 in terms of RMSE, RE, interannual variation and spatial resolution. GHI of three reanalysis data are close to the observation data from 1979 to 2019, but the decreasing trends of deviations are significant in JRA55 and ERA5. In terms of the stability of solar energy resources, three kinds of reanalysis data are close to the observation in northern China, while JRA55 is mainly higher, NCEP/DOE and ERA5 are mainly lower in southern China.

Key words

solar energy / resource assessment / China / applicability / atmospheric reanalysis data

Cite this article

Download Citations
Wang Chuanhui, Shen Yanbo, Yao Jinfeng, Zhou Shunwu. APPLICABILITY OF THREE REANALYSIS DATA IN ASSESSMENT OF SOLAR ENERGY RESOURCES IN CHINA[J]. Acta Energiae Solaris Sinica. 2022, 43(8): 164-173 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0039

References

[1] CHEN M S, DAVIS J, GAO W.A New cloud screening algorithm for ground-based direct-beam solar radiation[J]. Journal of atmospheric and oceanic technology, 2014, 31(12): 2591-2605.
[2] YANG S, WANG X L, WILD M.Causes of dimming and brightening in China inferred from homogenized daily clear-sky and all-sky in situ surface solar radiation records (1958-2016)[J]. Journal of climate, 2019, 32: 5901-5913.
[3] SIEBERT H, SZODRY K E, EGERER U, et al.Observations of aerosol, cloud, turbulence, and radiation properties at the top of the marine boundary layer over the Eastern North Atlantic Ocean: the ACORES campaign[J]. Bulletin of the American Meteorological Society, 2020, 102(1): 1-59
[4] 龚强, 徐红, 蔺娜, 等. 辽宁省太阳能资源评估及NASA数据适用性分析[J]. 中国电力, 2018, 51(2): 104-111.
GONG Q, XU H, LIN N, et al.Solar radiation resources estimation and reliability analyzing of NASA data in Liaoning province[J]. Electric power, 2018, 51(2): 104-111.
[5] 胡亚男, 李兴华, 郝玉珠. 内蒙古太阳能资源时空分布特征与评估研究[J]. 干旱区资源与环境, 2019, 33(12): 132-138.
HU Y N, LI X H, HAO Y Z.Spatiotemporal distribution characteristics and evaluation of solar energy resources in Inner Mongolia[J]. Journal of arid land resources and environment, 2019, 33(12): 132-138.
[6] 申彦波, 张顺谦, 郭鹏, 等. 基于SMARTS 模式的太阳能资源计算——以四川省为例[J]. 太阳能学报, 2016, 37(2): 482-488.
SHEN Y B, ZHANG S Q, GUO P, et al.Calculation for solar energy resource based on SMARTS mode-as a case study in Sichuan province[J]. Acta energiae solaris sinica, 2016, 37(2): 482-488.
[7] 郭艳君, 张思齐, 颜京辉, 等. 中国探空观测与多套再分析资料气温序列的对比研究[J]. 气象学报, 2016, 74(2): 271-284.
GUO Y J, ZHANG S Q, YAN J H, et al.A comparison of atmospheric temperature over China between radiosonde observations and multiple reanalysis datasets[J]. Acta meteorological sinica, 2016, 74(2): 271-284.
[8] XIA X A, WANG P C, CHEN H B, et al.Analysis of downwelling surface solar radiation in China from National Centers for Environmental Prediction reanalysis, satellite estimates, and surface observations[J]. Journal of geophysical research, 2006, 111, D09103, doi:10.1029/2005JD006405.
[9] 王丹, 盛立芳, 石广玉, 等. 中国地表太阳辐射再分析数据与观测的比较[J]. 应用气象学报, 2012, 23(6): 729-738.
WANG D, SHENG L F, SHI G Y, et al.Comparison of surface solar radiation reanalysis data and observation over China[J]. Journal of applied meteorological science, 2012, 23(6): 729-738.
[10] CHAUDHURI A H, PONTE R M.An evaluation of surface atmospheric changes over the arctic ocean for 2000-09 using recent reanalyses[J]. Earth interact, 2015, 19(2): 1-18.
[11] SILBER I, VERLINDE J, WANG S H, et al.Cloud influence on ERA5 and AMPS surface downwelling longwave radiation biases in West Antarctica[J]. Journal of climate, 2019, 32(22): 7935-7949.
[12] SLATER A G.Surface solar radiation in North America: a comparison of observations, reanalyses, satellite, and derived products[J]. Journal of hydrometeorology, 2016, 17:401-420.
[13] KANAMITSU M, EBISUZAKI W, WOOLLEN J, et al.NCEP-DOE AMIP-II reanalysis (R-2)[J]. Bulletin of the American Meteorological Society, 2002, 83(11):1631-1643.
[14] KOBAYASHI, C, IWASAKI T.Brewer-Dobson circulation diagnosed from JRA-55[J]. Journal of geophysical gesearch-atmospheres, 2016, 121(4): 1493-1510.
[15] ZHAO B, ZHANG B, SHI C X, et al.Comparison of the global energy cycle between Chineae reanalysis interim and ECMWF reanalysis[J]. Journal of meteorological research, 2019, 33(3): 563-575.
[16] GB/T3115—2014, 太阳能资源等级总辐射[S].
GB/T3115—2014, Classification of solar energy resource-global radiation[S].
[17] GUAN F L, ZHENG Y F, CAI Z Y, et al.Study of distinctive regional features of surface solar radiation in North and East China[J]. Acta meteorologica sinica, 2011, 25(4): 494-505.
[18] ZHANG H, YIN Q, TERUYUKI N, et al.Influence of changes in solar radiation on changes of surface temperature in China[J]. Acta meteorologica sinica, 2013, 27(1): 87-97.
[19] 马金玉, 梁宏, 罗勇, 等. 中国近50年太阳直接辐射和散射辐射变化趋势特征[J]. 物理学报, 2011, 60(6): 853-866.
MA J Y, LIANG H, LUO Y, et al.Variation trend of direct and diffuse radiation in China over recent 50 years[J]. Acta physica sinica, 2011, 60(6): 853-866.
[20] 李珂, 何凡能. 中国陆地太阳能资源开发潜力区域分析[J]. 地理科学进展, 2010, 29(9): 1049-1054.
LI K, HE F N.Analysis on mainland China's solar energy distribution and potential to utilize solar energy as an alternative energy source[J]. Progress in geography, 2010, 29(9): 1049-1054.
[21] 杨溯, 石广玉, 王标, 等. 1961~2009年我国地面太阳辐射变化特征及云对其影响的研究[J]. 大气科学, 2013, 37(5): 963-970.
YANG S, SHI G Y, WANG B, et al.Trends in surface solar radiation (SSR) and the effect of clouds on SSR during 1961-2009 in China[J]. Chinese journal of atmospheric sciences, 2013, 37(5): 963-970.
[22] WANG L G, WANG K C.Impacts of DEM uncertainty on estimated surface solar radiation and extracted river network[J]. Bulletin of the American Meteorological Society, 2015, 96(2): 297-304.
[23] QIU Z Z, LI P.Solar energy resource and its global distribution[M]. Advanced Energy Efficiency Technologies for Solar Heating, Cooling and Power Generation, 2019, 1-30.
[24] 梁玉莲, 申彦波, 白龙, 等. 华南地区太阳能资源评估与开发潜力[J]. 应用气象学报, 2017, 28(4): 481-492.
LIANG Y L, SHEN Y B, BAI L, et al.Assessment of solar energy resource and its exploitation potential in south China[J]. Journal of applied meteorological science, 2017, 28(4): 481-492.
[25] 闫加海, 张冬峰, 安炜, 等. 山西省太阳能资源时空分布特征及利用潜力评估[J]. 干旱气象, 2014, 32(5): 712-718.
YAN J H, ZHANG D F, AN W, et al.Distribution characteristics and assessment of solar energy resource in Shanxi[J]. Journal of arid meteorology, 2014, 32(5): 712-718.
PDF(4473 KB)

Accesses

Citation

Detail

Sections
Recommended

/