CHARACTERISTICS AND THERMOCHEMICAL REACTION MECHANISM OF MANGANESE-IRON-LITHIUM COMPOSITE METAL OXIDE SUITABLE FOR SOLAR THERMAL POWER GENERATION

Xiao Gang, Peng Jikang, Yuan Peng, Xiang Duo, Ni Mingjiang

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (11) : 119-124.

PDF(2168 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2168 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (11) : 119-124. DOI: 10.19912/j.0254-0096.tynxb.2021-0047

CHARACTERISTICS AND THERMOCHEMICAL REACTION MECHANISM OF MANGANESE-IRON-LITHIUM COMPOSITE METAL OXIDE SUITABLE FOR SOLAR THERMAL POWER GENERATION

  • Xiao Gang, Peng Jikang, Yuan Peng, Xiang Duo, Ni Mingjiang
Author information +
History +

Abstract

The iron and lithium oxideswere added to the manganese-based oxide to reduce the reaction temperature for thermochemical energy storage, facilitating development of the new generation technologyof solar thermal power. Comparingwith Mn2O3, the initial reduction temperature ofthe new composite, Li2FeMn3O8, decreased from 773℃ to 622 ℃ experimentally, withthe activation energy from 797.10 kJ/mol to 132.44 kJ/mol. The oxidation temperature decreased to 590 ℃, whilethe oxidation reaction heat increased up to 209.40 kJ/kg. The new composite showed an excellent reaction stability after 105 experimental cycles.

Key words

thermochemistry / metal oxide / reaction kinetics / thermal storage temperature / manganese-iron-lithium

Cite this article

Download Citations
Xiao Gang, Peng Jikang, Yuan Peng, Xiang Duo, Ni Mingjiang. CHARACTERISTICS AND THERMOCHEMICAL REACTION MECHANISM OF MANGANESE-IRON-LITHIUM COMPOSITE METAL OXIDE SUITABLE FOR SOLAR THERMAL POWER GENERATION[J]. Acta Energiae Solaris Sinica. 2022, 43(11): 119-124 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0047

References

[1] BARLEV D, VIDU R, STROEVE P.Innovation in concentrated solar power[J]. Solar energy materials & solar cells, 2010, 95(10): 2703-2725.
[2] PARDO P, DEYDIER A, MINVIELLEANXIONNAZ Z, et al.A review on high temperature thermochemical heat energy storage[J]. Renewable & sustainable energy reviews, 2014, 32(5): 591-610.
[3] PAGKOURA C, KARAGIANNAKIS G, ZYGOGIANNI A, et al.Cobalt oxide based honeycombs as reactors/heat exchangers for redox thermochemical heat storage in future CSP plants[J]. Energy procedia, 2015, 69: 978-987.
[4] ALONSO E, PÉREZ-RÁBAGO C, LICURGO J, et al. First experimental studies of solar redox reactions of copper oxides for thermochemical energy storage[J]. Solar energy, 2015, 115: 297-305.
[5] WONG B, BROWN L, SCHAUBE F, et al.Oxide based thermochemical heat storage[C]//Proceedings of Solar PACES 2010, Perpignan, France, 2010.
[6] ANDRÉ L, ABANADES S, FLAMANT G.Screening of thermochemical systems based on solid-gas reversible reactions for high temperature solar thermal energy storage[J]. Renewable & sustainable energy reviews, 2016, 64: 703-715.
[7] PRIETO C, COOPER P, FERNANDEZ A I, et al.Review of technology: thermochemical energy storage for concentrated solar power plants[J]. Renewable & sustainable energy reviews, 2016, 60: 909-929.
[8] AGRAFIOTIS C, ROEB M, SCHMÜCKER M, et al. Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 1: testing of cobalt oxide-based powders[J]. Solar energy, 2014, 102(4): 189-211.
[9] AGRAFIOTIS C, ROEB M, SCHMÜCKER M, et al. Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 2: redox oxide-coated porous ceramic structures as integrated thermochemical reactors/heat exchangers[J]. Solar energy, 2015, 114(1): 440-458.
[10] AGRAFIOTIS C, ROEB M, SCHMÜCKER M, et al. Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 3: cobalt oxide monolithic porous structures as integrated thermochemical reactors/heat exchangers[J]. Solar energy, 2015, 114(45): 459-475.
[11] CARRILLO A J, SERRANO D P, PIZARRO P, et al.Design of efficient Mn-based redox materials for thermochemical heat storage at high temperatures[C]//SolarPACES 2015, Cape Town, South Africa, 2015.
[12] GOKON N, NISHIZAWA A, YAWATA T, et al.Fe-doped manganese oxide redox material for thermochemical energy storage at high-temperatures[C]//SolarPACES 2018, Casablanca, Morocco, 2018.
[13] HAMIDI M, BAYON A, KREIDER P, et al.Reduction kinetics for large spherical 2:1 iron-manganese oxide redox materials for thermochemical energy storage[J]. Chemical engineering science, 2019, 201: 74-81.
[14] 宋兴福, 汪瑾, 罗妍, 等. 六氨氯化镁热解过程及其非等温动力学[J]. 化工学报, 2008, 59(9): 2255-2259.
SONG X F, WANG J, LUO Y, et al.Thermal decomposition and non-isothermal kinetic evaluation of magnesium chloride hexammoniate[J]. Journal of chemical industry & engineering, 2008, 59(9): 2255-2259.
[15] 胡荣祖. 热分析动力学[M]. 北京: 科学出版社, 2008: 255.
HU R Z.Thermal analysis kinetics[M]. Beijing: Science Press, 2008: 255.
[16] 彭记康. 基于三元金属氧化物的热化学储热反应特性和温度调控机制[D]. 杭州: 浙江大学, 2021.
PENG J K.Thermochemical heat storage reaction characteristics and temperature control mechanism based on ternary metal oxides[D]. Hangzhou: Zhejiang University, 2021.
PDF(2168 KB)

Accesses

Citation

Detail

Sections
Recommended

/