KL DIVERGENCE-BASED DISTRIBUTIONALLY ROBUST PLANNING METHOD FOR ENERGY STORAGE PLANTS

Li Xuxia, Zhang Linna, Zheng Xiaoming, Li Jia, Deng Jiaojiao, Liang Yan

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (4) : 46-55.

PDF(1508 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1508 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (4) : 46-55. DOI: 10.19912/j.0254-0096.tynxb.2021-0049
Topics on Key Technologies for Safety of Electrochemical Energy Storage Systems and Echelon Utilization of Decommissioned Power Batteries

KL DIVERGENCE-BASED DISTRIBUTIONALLY ROBUST PLANNING METHOD FOR ENERGY STORAGE PLANTS

  • Li Xuxia1, Zhang Linna2, Zheng Xiaoming1, Li Jia1, Deng Jiaojiao1, Liang Yan1
Author information +
History +

Abstract

The cycle life of electrochemical energy storage is affected by the number of charges and discharg and the depth of discharge. In order to more accurately plan the energy storage plants in the renewable energy power system, this paper proposes a distributionally robust planning method based on Kullback-Leibler (KL) divergence. According to the power function of cycle life of electrochemical energy storage, the life model of energy storage plants with equivalent full cycles times is established. Considering the life model constraints of the energy storage plant and system operating constraints, the planning model of energy storage plants is constructed with the life cycle cost and units’ operating cost minimum as the objective. Furthermore, the uncertainty set of wind power output based on KL divergence is embedded into the planning model of energy storage plants, and the distributionally robust planning model of energy storage plants is transformed into mixed integer linear programming model by sample average approximation method. In the modified IEEE-30 mode system with two wind farms, the advantages of the distributionally robust planning method proposed in this paper are verified.

Key words

energy storage plants / electrochemical energy storage / variable lifetime characteristic / chance constrained / distributionally robust optimization / Kullback-Leibler divergence

Cite this article

Download Citations
Li Xuxia, Zhang Linna, Zheng Xiaoming, Li Jia, Deng Jiaojiao, Liang Yan. KL DIVERGENCE-BASED DISTRIBUTIONALLY ROBUST PLANNING METHOD FOR ENERGY STORAGE PLANTS[J]. Acta Energiae Solaris Sinica. 2022, 43(4): 46-55 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0049

References

[1] 王成山, 于波, 肖峻, 等. 平滑可再生能源发电系统输出波动的储能系统容量优化方法[J]. 中国电机工程学报, 2012, 32(16): 1-8.
WANG C S, YU B, XIAO J, et al. Hybrid energy storage system and control system design for wind power balancing[J]. Proceedings of the CSEE, 2012, 32(16): 1-8.
[2] 胡泽春, 夏睿, 吴林林, 等. 考虑储能参与调频的风储联合运行优化策略[J]. 电网技术, 2016, 40(8): 2251-2257.
HU Z H, XIA R, WU L L, et al. Joint operation optimization of wind-storage union with energy storage participating frequency regulation[J]. Power system technology, 2016, 40(8): 2251-2257.
[3] 鲍冠南, 陆超, 袁志昌, 等. 基于动态规划的电池储能系统削峰填谷实时优化[J]. 电力系统自动化, 2012, 36(12): 11-16.
BAO G N, LU C, YUAN Z C, et al. Load shift real-time optimization strategy of battery energy storage system based on dynamic programming[J]. Automation of electric power systems, 2012, 36(12): 11-16.
[4] 丁逸行, 徐青山, 吕亚娟, 等. 考虑需量管理的用户侧储能优化配置[J]. 电网技术, 2019, 43(4): 1179-1186.
DING Y X, XU Q S, LYU Y J, et al. User-side energy storage optimization configuration considering demand management[J]. Power system technology, 2019, 43(4): 1179-1186.
[5] 国家发展和改革委员会.关于促进储能技术与产业发展的指导意见[EB/OL]. [2019-12-12]. http://www.ndrc.gov.cn/zcfb/zcfbtz/201710/t20171011_863186.html.
National Development and Reform Commission.Guidance on promoting energy storage technology and industrial development[EB/OL]. [2019-12-12]. http://www.ndrc.gov.cn/zcfb/zcfbtz/201710/t20171011_863186.html.
[6] 韩晓娟, 程成, 籍天明, 等. 计及电池使用寿命的混合储能系统容量优化模型[J]. 中国电机工程学报, 2013, 33(34): 91-97.
HAN X J, CHENG C, JI T M, et al. Capacity optimal modeling of hybrid energy storage systems considering battery life[J]. Proceedings of the CSEE, 2013, 33(34): 91-97.
[7] 娄素华, 易林, 吴耀武, 等. 基于可变寿命模型的电池储能容量优化配置[J]. 电工技术学报, 2015, 30(4): 265-271.
LOU S H, YI L, WU Y W, et al. Optimizing deployment of battery energy storage based on lifetime predication[J]. Transactions of China Electrotechnical Society, 2015, 30(4): 265-271.
[8] 姜欣, 郑雪媛, 胡国宝, 等. 市场机制下面向电网的储能系统优化配置[J]. 电工技术学报, 2019, 34(21): 4601-4610.
JIANG X, ZHENG X Y, HU G B, et al. Optimization of battery energy storage system locating and sizing for the gird under the market mechanism[J]. Transactions of China Electrotechnical Society, 2019, 34(21): 4601-4610.
[9] 李文超, 童亦斌, 张维戈.计及电池使用寿命的电动汽车充电站储能容量配置方法[J]. 电工电能新技术, 2019, 39(4): 58-66.
LI W C, TONG Y B, ZHANG W G.Energy storage capacity allocation method of electric vehicle charging station considering battery life[J]. Advanced technology of electrical engineering and energy, 2019, 39(4): 58-66.
[10] DUGGAL I, VENKATESH B.Short-term scheduling of thermal generators and battery storage with depth of discharge-based cost model[J]. IEEE transactions on power systems, 2015, 30(4): 2110-2118.
[11] 王荔妍, 陈启鑫, 何冠楠, 等. 考虑电池储能寿命模型的发电计划优化[J]. 电力系统自动化, 2019, 43(8): 93-100.
WANG L Y, CHEN Q X, HE G N, et al. Optimization of generation scheduling considering battery energy storage life model[J]. Automation of electric power systems, 2019, 43(8): 93-100.
[12] 袁铁江, 蒋平, 孙谊媊, 等. 风储一体化电站容量双层优化规划研究[J]. 高电压技术, 2015, 41(10): 3204-3212.
YUAN T J, JIANG P, SUN Y Q, et al. Study on double-layer optimization planning of capacity integrated power station[J]. High voltage engineering, 2015, 41(10): 3204-3212.
[13] 郑乐, 胡伟, 陆秋瑜, 等. 储能系统用于提高风电接入的规划和运行综合优化模型[J]. 中国电机工程学报, 2014, 34(16): 2533-2542.
ZHENG L, HU W, LU Q Y, et al. Research on planning and operation model for energy storage system to optimize wind power integration[J]. Proceedings of the CSEE, 2014, 34(16): 2533-2542.
[14] XIONG P, SINGH C.Optimal planning of storage in power systems integrated with wind power generation[J]. IEEE transactions on sustainable energy, 2016, 7(1): 232-240.
[15] QIU T, XU B L, WANG Y S, et al. Stochastic multistage coplanning of transmission expansion and energy storage[J]. IEEE transactions on power systems, 2017, 32(1): 643-651.
[16] 丁明, 解蛟龙, 刘新宇, 等. 面向风电接纳能力评价的风资源/负荷典型场景集生成方法与应用[J]. 中国电机工程学报, 2016, 36(15): 4064-4071.
DING M, XIE J L, LIU X Y, et al. The generation method and application of wind resources/load typical scenario set for evaluation of wind power grid integration[J]. Proceedings of the CSEE, 2016, 36(15): 4064-4071.
[17] 韩为超, 刘俊勇, 向月, 等. 基于目标机会约束规划的储能容量优化配置模型[J]. 电力建设, 2017, 38(4): 71-78.
HAN W C, LIU J Y, XIANG Y, et al. An optimal allocation model of energy storage capacity based on goal-chance constrained programming[J]. Electric power construction, 2017, 38(4): 71-78.
[18] JABRR A, DZAFIC I, PAL B.Robust optimization of storage investment on transmission networks[J]. IEEE transactions on power systems, 2015, 30(1): 531-539.
[19] 韩杏宁, 黎嘉明, 文劲宇, 等. 含多风电场的电力系统储能鲁棒优化配置方法[J]. 中国电机工程学报, 2015, 35(9): 2120-2127.
HAN X N, LI J M, WEN J Y, et al. Optimization for robust energy storage allocation in power system with multiple wind farms integrated[J]. Proceedings of the CSEE, 2015, 35(9): 2120-2127.
[20] 叶健民, 蔡京陶, 王若愚, 等. 考虑风电场接入的输电网与储能扩展鲁棒规划[J]. 南方电网技术, 2019, 13(3): 25-32.
YE J M, CAI J T, WANG R Y, et al. Expansion robust planning of transmission network and energy storage considering wind farm integration[J]. Southern power system technology, 2019, 13(3): 25-32.
[21] CHEN Y W, GUO Q L, SUN H B, et al. A distributionally robust optimization model for unit commitment based on Kullback-Leibler divergence[J]. IEEE transactions on power systems, 2018, 33(5): 5147-5160.
[22] 施云辉, 王橹裕, 陈玮, 等. 基于风电预测误差聚类的分布鲁棒含储能机组组合[J]. 电力系统自动化, 2019, 43(22): 3-12.
SHI Y H, WANG L Y, CHEN W, et al. Distributed robust unit commitment with energy storage based on forecasting error clustering of wind power[J]. Automation of electric power systems, 2019, 43(22): 3-12.
[23] JIANG R W, GUAN Y P.Data-driven chance constrained stochastic program[J]. Mathematical programming, 2016, 158(1): 291-327.
[24] 薛金花, 叶季蕾, 陶琼, 等. 采用全寿命周期成本模型的用户侧电池储能经济可行性研究[J]. 电网技术, 2016, 40(8): 2471-2476.
XUE J H, YE J L, TAO Q, et al. Economic feasibility of user-side battery energy storage based on whole-life-cycle cost model[J]. Power system technology, 2016, 40(8): 2471-2476.
[25] 葛玉友, 尚策.寿命约束的储能规划[J]. 中国电机工程学报, 2020, 40(19): 6150-6161.
GE Y Y, SHANG C.Energy storage planning constrained by its life[J]. Proceedings of the CSEE, 2020, 40(19): 6150-6161.
[26] CARRION M, ARROYO J M.A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem[J]. IEEE transactions on power systems, 2006, 21(3): 1371-1378.
[27] DING T, LIU S Y, YUAN W, et al. A two-stage robust reactive power optimization considering uncertain wind power integration in active distribution networks[J]. IEEE transactions on sustainable energy, 2016, 7(1): 301-311.
PDF(1508 KB)

Accesses

Citation

Detail

Sections
Recommended

/