TECHNOLOGY OF SELF-PROPELLED PNEUMATIC OSCILLATING WATER COLUMN WAVE POWER SHIP

Wu Bijun, Zhang Fuming, Long Zhengxiang, Li Meng, Wu Rukang

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (8) : 458-462.

PDF(966 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(966 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (8) : 458-462. DOI: 10.19912/j.0254-0096.tynxb.2021-0057

TECHNOLOGY OF SELF-PROPELLED PNEUMATIC OSCILLATING WATER COLUMN WAVE POWER SHIP

  • Wu Bijun, Zhang Fuming, Long Zhengxiang, Li Meng, Wu Rukang
Author information +
History +

Abstract

The wave power ship is composed of a ship-type floating room, a horizontal tube, a vertical tube, an air turbine and a generator. The flume test results of a model 1.2 meters long, 0.51 meters wide show that the peak of capture width ratio is 104.07% under regular waves, 82.4% under random waves. Based on the results of the model, several types of power generating ships were designed according to the principle of similarity. A prototype developed with installed power of 1 kW, main body length of 5.2 m, width of 2.3 m and weight of 4.5 t had been tested in the sea of Daya Bay, Shenzhen, realizing sailing and power generating of the wave power ship.

Key words

wave energy / oscillating water column / capture width ratio / wave power ship

Cite this article

Download Citations
Wu Bijun, Zhang Fuming, Long Zhengxiang, Li Meng, Wu Rukang. TECHNOLOGY OF SELF-PROPELLED PNEUMATIC OSCILLATING WATER COLUMN WAVE POWER SHIP[J]. Acta Energiae Solaris Sinica. 2022, 43(8): 458-462 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0057

References

[1] BABARIT A.A database of capture width ratio of wave energy converters[J]. Renewable energy, 2015, 80: 610-628.
[2] 熊玮, 谷汉斌, 刘海源, 等. 波浪能发电技术在船舶上的应用[J]. 水运管理, 2018, 40(3): 30-33.
XIONG W, GU H B, LIU H Y, et al.Application of wave power generation technology in ship[J]. Shipping management, 2018, 40(3): 30-33.
[3] FALCÃO A F. Wave energy utilization: a review of the technologies[J]. Renewable and sustainable energy reviews, 2010, 14: 899-918.
[4] HEATH T V.A review of oscillating water columns[J]. Philosophical transactions of the Royal Society A: mathematical, physical and engineering sciences, 2012, 370(1959): 235-245.
[5] 梁贤光, 王伟, 蒋念东, 等. 5 kW后弯管波力发电浮标模型性能的试验研究[J]. 新能源, 1995, 17(6): 5-10.
LIANG X G, WANG W, JIANG N D, et al.An experimental research on performance of the 5 kW BBDB model[J]. New energy, 1995, 17(6): 5-10.
[6] 粱贤光, 王伟, 杜斌, 等. 后弯管波力发电浮标模型性能试验研究[J]. 海洋工程, 1997, 15(3): 77-86.
LIANG X G, WANG W, DU B, et al.Experimental research on performance of BBDB wave-activated generation device model[J]. The ocean engineering, 1997, 15(3): 77-86.
[7] 梁贤光, 孙培亚, 王伟, 等. 后弯管波力发电浮体模型试验研究[J]. 新能源, 2000, 22(2): 10-15.
LIANG X G, SUN P Y, WANG W, et al.The experimental study of BBDB generating body model[J]. New energy, 2000, 22(2): 10-15.
[8] IMAI Y, TOYOTA K, NAGATA S, et al.Duct extension effect on the primary conversion of a wave energy converter "backward bent duct buoy"[EB/OL]. http://www.ioes.saga-u.ac.jp/archive/15-6.pdf.
[9] 梁贤光, 王伟, 杜彬, 等. 后弯管波力发电浮标模型性能试验研究[J]. 海洋工程, 1997, 15(3): 78-87.
LIANG X G, WANG W, DU B, et al.Experimental research on performance of BBDB wave-activated generation device model[J]. The ocean engineering, 1997, 15(3): 78-87.
[10] LI M, WU B J, JIANG C Y, et al.Effect of reciprocating and unidirectional airflow on primary conversion of a pentagonal Backward Bent Duct Buoy[J]. Applied ocean research, 2019, 89: 85-95.
[11] LI M, WU R K, WU B J, et al.Experimental study on conversion efficiency of a floating OWC pentagonal backward bent duct buoy wave energy converter[J]. China ocean engineering, 2019, 33(3): 297-308.
[12] PATHAK A G, SUBRAMANIAN V A, MASUDA Y.Performance studies on a scaled model of backward bent ducted buoy (BBDB) type wave energy converter in regular and random waves[C]//The Ninth International Offshore and Polar Engineering Conference, Brest, France, 1999.
PDF(966 KB)

Accesses

Citation

Detail

Sections
Recommended

/