A numerical model was established for the photovoltaic phase change (PV-PCM) thermal management system, and the validity of model was verified by comparing with the experimental results. On this basis, the variation rule of different composite PCM physical property parameters (phase change temperature, mass fraction of expanded graphite, and thickness) on solar cell temperature within 24 h was studied. The effects of maximum temperature, duration of time above 45 ℃ and 41 ℃, and duration of night below 35 ℃ were studied by orthogonal experiment method and visual analysis method. The influence of different types and numbers of heat dissipation fins on the working temperature of solar cell was further simulated to optimize heat dissipation structure of PV-PCM system. The research shows that the use of inward fin heat dissipation structure and the composite PCM with phase change temperature of 40.2 ℃, mass fraction of expanded graphite of 15%, and thickness of 40 mm can minimize the maximum operating temperature of the solar cell, which is about 42 ℃.
Key words
solar cells /
phase change materials /
numerical simulation /
temperature /
heat dissipation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] CARMONA M, BASTOS A P, GARCÍA J D. Experimental evaluation of a hybrid photovoltaic and thermal solar energy collector with integrated phase change material (PVT-PCM) in comparison with a traditional photovoltaic(PV) module[J]. Renewable energy, 2021, 172(7): 680-696.
[2] MA T, LI Z P, ZHAO J X.Photovoltaic panel integrated with phase change materials (PV-PCM): technology overview and materials selection[J]. Renewable and sustainable energy reviews, 2019, 116(12): 1-16.
[3] KANT K, SHUKLA A, SHARMA A, et al.Heat transfer studies of photovoltaic panel coupled with phase change material[J]. Solar energy, 2016, 140(12): 151-161.
[4] 李钊, 许思传, 常国峰, 等. 复合相变材料用于电池包热管理散热性能分析[J]. 电源技术, 2015, 39(2): 257-259.
LI Z, XU S C, CHANG G F, et al.Analysis of heat dissipation performance of composite PCM for battery pack thermal management[J]. Power technology, 2015, 39(2): 257-259.
[5] 凌子夜. 基于膨胀石墨基复合相变材料的动力电池热管理系统性能研究[D]. 广州: 华南理工大学, 2016.
LING Z Y.Research on the performance of power battery thermal management system based on expanded graphite-based composite PCM[D]. Guangzhou: South China University of Technology, 2016.
[6] 尤若波. 相变材料在动力电池热管理中的应用研究[J]. 储能科学与技术, 2017, 6(5): 1148-1157.
YOU R B.Application of PCM in thermal management of power battery[J]. Energy storage science and technology, 2017, 6(5): 1148-1157.
[7] 尹辉斌, 高学农, 丁静. 复合相变材料应用于电子散热的热分析[J]. 工程热物理学报, 2012, 33(5): 831-834.
YIN H B, GAO X N, DING J.Thermal analysis of electronic heat dissipation with composite PCM[J]. Journal of engineering thermophysics, 2012, 33(5): 831-834.
[8] ALLOUCHE Y, VARGA S, BOUDEN C, et al.Validation of a CFD model for the simulation of heat transfer in a tubes-in-tank PCM storage unit[J]. Renewable energy, 2016, 89(4): 371-379.
[9] 罗子庚. 基于定型复合相变材料的光伏电池板热管理的研究[D]. 广州: 华南理工大学, 2018.
LUO Z G.Study on thermal management of photovoltaic panels based on shaped composite PCM[D]. Guangzhou: South China University of Technology, 2018.
[10] KUMAR S, MULLICK S C.Wind heat transfer coefficient in solar collectors in outdoor conditions[J]. Solar energy, 2010, 84(6): 956-963.
[11] 杜晓光. 太阳能电池玻璃基板对流辐射复合传热特性的数值模拟[D]. 济南: 山东大学, 2013.
DU X G.Numerical simulation of composite heat transfer characteristics of convection and radiation on solar cell glass substrate[D]. Ji'nan: Shandong University, 2013.
[12] WANG X L, LI B, QU Z G, et al.Effects of graphite microstructure evolution on the anisotropic thermal conductivity of expanded graphite/paraffin phase change materials and their thermal energy storage performance[J]. International journal of heat and mass transfer, 2020, 155(7): 1-9.
[13] ZHOU D, WU S W, WU Z G, et al.Thermal performance analysis of multi-slab phase change thermal energy storage unit with heat transfer enhancement approaches[J]. Renewable energy, 2021, 172(7): 46-56.