RESEARCH ON MAXIMUM POWER TRACKING STRATEGY OF WAVE ENERGY BASED ON MHD GENERATOR

Liu Huabing, Zhang Qinghe, Liu Yanjiao, Peng Aiwu

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (9) : 402-409.

PDF(2761 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2761 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (9) : 402-409. DOI: 10.19912/j.0254-0096.tynxb.2021-0122

RESEARCH ON MAXIMUM POWER TRACKING STRATEGY OF WAVE ENERGY BASED ON MHD GENERATOR

  • Liu Huabing1,2, Zhang Qinghe1, Liu Yanjiao1, Peng Aiwu1,2
Author information +
History +

Abstract

In order to improve the wave energy conversion efficiency of a given sea sample machine, a combined control strategy is proposed, in which the mountain climbing method is used to determine the optimal reference current, and the model predictive control algorithm is used to determine the switch off of MOSFET The switch follows the optimal reference current. When the wave height decreases, the direction of disturbance will be judged wrong when the hill-climbing method is used to determine the optimal reference current, so the judgment of average power reduction threshold is added. The simulation results show that the improved hill-climbing method can correctly determine the disturbance direction whether the wave height rises or falls, and can adaptively adjust the equivalent load of the boost circuit with any change of the wave height to achieve the maximum power output of the MHD wave generator. Finally, the hardware circuit is built to simulate the MHD wave generator with DC voltage source, and the effectiveness of the control strategy is verified by experiments.

Key words

magnetohydrodynamic generator / wave energy / maximum power point trackers / hill climbing / model predictive control

Cite this article

Download Citations
Liu Huabing, Zhang Qinghe, Liu Yanjiao, Peng Aiwu. RESEARCH ON MAXIMUM POWER TRACKING STRATEGY OF WAVE ENERGY BASED ON MHD GENERATOR[J]. Acta Energiae Solaris Sinica. 2022, 43(9): 402-409 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0122

References

[1] 王传崑. 海洋能资源分析方法及储量评估[M]. 北京: 海洋出版社, 2009: 12-16.
WANG C K.Analysis methods and reserves assessment of marine energy resources[M]. Beijing: China Ocean Press, 2009: 12-16.
[2] 马哲. 振荡浮子式波浪发电装置的水动力学特性研究[D]. 青岛: 中国海洋大学, 2013.
MA Z.Study on hydrodynamic characteristics of oscillating floating wave generator[D]. Qingdao: Ocean University of China, 2013.
[3] 张步恩, 郑源, 付士凤, 等. 一种新型波浪能发电转换装置试验研究[J]. 中国电机工程学报, 2019, 39(24):7264-7271.
ZHANG B E, ZHENG Y, FU S F, et al.Experimental study on a new wave energy conversion device[J]. Proceedings of the CSEE, 2019, 39(24): 7264-7271.
[4] 刘春元, 洪立玮, 黄磊, 等. 外次级永磁直线电机在波浪发电系统中的应用[J]. 太阳能学报, 2019, 40(11):3017-3024.
LIU C Y, HONG L W, HUANG L, et al.Application of external secondary permanent magnet linear motor in wave power generation system[J]. Acta solaris energiae sinica, 2019, 40(11): 3017-3024.
[5] 林礼群, 姜家强, 吴必军, 等. 漂浮式波浪能直线发电原理试验研究[J]. 太阳能学报, 2016, 37(3): 564-569.
LIN L Q, JIANG J Q, WU B J, et al.Experimental study on principle of floating wave energy linear power generation[J]. Acta solaris energiae sinica, 2016, 37(3): 564-569.
[6] 郑明月, 杨金明, 林凯东, 等. 双自由度波浪发电系统的最大功率跟踪控制[J]. 可再生能源, 2017, 35(5):778-782.
ZHENG M Y, YANG J M, LIN K D, et al.Maximum power tracking control of two degree of freedom wave power generation system[J]. Renewable energy, 2017, 35(5): 778-782.
[7] 黄宣睿, 孙凯, 肖曦, 等. 基于平均功率估算的直驱海浪发电最大功率点跟踪控制方法[J]. 电力系统自动化, 2016, 40(14): 51-56.
HUANG X R, SUN K, XIAO X, et al.Maximum power point tracking control method for direct drive ocean wave power generation based on average power estimation[J]. Automation of electric power systems, 2016, 40(14): 51-56.
[8] 张家明, 黎明, 张帅, 等. 100 kW组合型振荡浮子式波浪发电装置能量转换系统研究[J]. 太阳能学报, 2017, 38(12): 3356-3362.
ZHANG J M, LI M, ZHANG S, et al.Energy conversion system research of 100 kW combined oscillating float wave power plant[J]. Acta solaris energiae sinica, 2017, 38(12): 3356-3362.
[9] 杨健, 黄磊, 仲伟波, 等. 直驱式波浪发电系统能量跟踪控制[J]. 电工技术学报, 2017, 32(1): 22-29.
YANG J, HUANG L, ZHONG W B, et al.The energy tracking control strategy for direct drive wave energy generation[J]. Transactions of China Electrotechnical Society, 2017, 32(1): 22-29.
[10] LIU B L, LI J, PENG Y, et al.Experimental and numerical investigation of magnetohydrodynamic generator for wave energy[J]. Journal of ocean and wind energy, 2015, 2(1): 21-27.
[11] ZHAO L Z, PENG Y, SHA C W, et al.Effect of liquid metal characteristics on performance of LMMHD wave energy conversion system[C]//Proceedings of the 19 International Offshore and Polar Engineering Conference, Chennai, India, 2009.
[12] 刘艳娇. 点吸收式液态金属磁流体波浪发电系统性能特性研究[D]. 北京: 中国科学院大学, 2017.
LIU Y J.Performance characteristics of point absorption liquid metal magnetohydrodynamic wave power generation system[D]. Beijing: University of Chinese Academy of Sciences, 2017.
[13] 高巍. ANSYSAQWA软件入门提高[M]. 北京: 中国水利水电出版社, 2018: 130-145.
GAO WEI.Introduction to ANSYSAQWA software[M]. Beijing: China Water & Power Press, 2018: 130-145.
[14] PECHER A.Handbook of ocean wave energy[M]. USA: Ocean Engineering & Oceanography, 2018: 132-146.
[15] 居滋象. 开环磁流体发电[M]. 北京: 北京工业大学出版社, 1998: 55-65.
JU Z X.Open-loop magnetohydrodynamic power generation[M]. Beijing: Beijing University of Technology Press, 1998: 55-65.
[16] 胡玉震,彭燕,叶冲, 等. 波浪能驱动的液态金属磁流体发电机特性分析[J]. 电工电能新技术, 2012, 31(16): 52-56.
HU Y Z, PENG Y, YE C, et al.Characteristic analysis of liquid metal MHD generator driven by wave energy[J]. Advanced technology of electrical engineering and energy, 2012, 31(16): 52-56.
PDF(2761 KB)

Accesses

Citation

Detail

Sections
Recommended

/