STUDY ON THERMODYNAMIC EQUILIBRIUM MODEL OF DOWNDRAFT BIOMASS GASIFIER

Yang Hui, Chen Wenyu, Sun Jiao, Chen Wenyi

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (10) : 335-342.

PDF(1603 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1603 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (10) : 335-342. DOI: 10.19912/j.0254-0096.tynxb.2021-0156

STUDY ON THERMODYNAMIC EQUILIBRIUM MODEL OF DOWNDRAFT BIOMASS GASIFIER

  • Yang Hui1,2, Chen Wenyu1,2, Sun Jiao1,2, Chen Wenyi1,2
Author information +
History +

Abstract

The thermodynamic equilibrium model of downdraft biomass gasifier was established, which includes coke, tar and gas. The model was verified with published experimental data, and its root mean square(RMS) was between 1.304 and 3.814. The results show that the predicted value of the model is in good agreement with the experimental data, and the model could be considered reliable. Then, the effects of different operating parameters (equivalent ratio, preheating temperature and reaction temperature of gasifier) on gas composition, calorific value and yield of cotton stalk gasification in two gasification atmospheres of cotton stalk downdraft biomass gasifier with air and oxygen-rich gas were simulated. The simulation results show that when the oxygen-enriched gas is used as the gasification agent, with the equivalent ratio from 0.20 to 0.35, the N2 content in the gas is significantly lower than that in the air, decreasing more than 10%. While it was found that the content of H2 and CO and the calorific value in the gas can be increased, and the calorific value is about 20% higher than that with air. The preheating temperature had a limited effect on the change of gasification composition. As the preheating temperature changed from 30 ℃ to 130 ℃, the average calorific value of the gas increased from 5.2 MJ/m3 of air to 7.0 MJ/m3 of oxygen-enriched gas. As the reaction temperature of the gasifier increased from 750 ℃ to 1250 ℃, H2 and CO under the two gasification agents of air and oxygen-enriched gas decreased from 20.94%、26.84% and 21.77%、28.67% to 4.06%、9.12% and 10.49%、21.60%,leading to a decrease in the calorific value of the gas.

Key words

biomass / downdraft gasifier / thermodynamic model / rich oxygen gasification

Cite this article

Download Citations
Yang Hui, Chen Wenyu, Sun Jiao, Chen Wenyi. STUDY ON THERMODYNAMIC EQUILIBRIUM MODEL OF DOWNDRAFT BIOMASS GASIFIER[J]. Acta Energiae Solaris Sinica. 2022, 43(10): 335-342 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0156

References

[1] BARUAH D.Modeling of biomass gasification: a review[J]. Renewable sustainable energy reviews, 2014, 39: 806-815.
[2] SHARMA A K.Equilibrium modeling of global reduction reactions for a downdraft (biomass) gasifier[J]. Energy conversion and management, 2008, 49(4): 832-842.
[3] 赵展, 刘晓东, 姜雪, 等. 生物质气化过程热力学模型分析[J]. 应用科技, 2011, 38(7): 44-48.
ZHAO Z, LIU X D, JIANG X, et al.Thermodynamic model analysis of biomass gasification process[J]. Applied science and technology, 2011, 38(7): 44-48.
[4] 蒋受宝, 蒋绍坚, 张灿. 生物质气化计算平衡模型[J]. 中南林学院学报, 2006, 26(2): 68-71.
JIANG S B, JIANG S J, ZHANG C.Calculation balance model of biomass gasification[J]. Journal of Central South Forestry University, 2006, 26(2): 68-71.
[5] ITAI Y, SANTOS R, BRANQUINHO M, et al.Numerical and experimental assessment of a downdraft gasifier for electric power in Amazon using açaí seed (Euterpe oleracea Mart.) as a fuel[J], Renewable energy, 2014, 66: 662-669.
[6] 蒋绍坚, 赵颖, 林竹, 等. 高温空气气化数学模型的建立与分析[J]. 太阳能学报, 2006, 27(10): 1058-1062.
JIANG S J, ZHAO Y, LIN Z, et al.Establishment and analysis of mathematical model for high-temperature air gasification[J]. Acta energia solaris sinica, 2006, 27(10): 1058-1062.
[7] VERA D, MENA B D, JURADO F, et al.Study of a downdraft gasifier and gas engine fueled with olive oil industry wastes[J]. Applied thermal engineering, 2013, 51(1-2): 119-129.
[8] RONG L, MANEERUNG T, NEOH K G, et al.Co-gasification of sewage sludge and woody biomass in a fixed-bed downdraft gasifier: toxicity assessment of solid residues[J]. Waste manage, 2015, 36(2): 241-255.
[9] FORTUNATO B, BRUNETTI G, CAMPOREALE S M, et al.Thermodynamic model of a downdraft gasifier[J]. Energy conversion and management, 2017, 140(17): 281-294.
[10] JARUNGTHAMMACHOTE S, DUTTA A.Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier[J]. Energy, 2007, 32(9): 1660-1669.
[11] HUANG H J, RAMASWAMY S.Modeling biomass gasification using thermodynamic equilibrium approach[J]. Applied biochemistry and biotechnology, 2009, 154(1): 193-204.
[12] 闫桂焕, 孙奉仲, 孙荣峰, 等. 生物质气化过程的热力学模型研究[J]. 农业机械学报, 2010, 41(9): 85-89.
YAN G H, SUN F Z, SUN R F, et al.Study on thermodynamic model of biomass gasification process[J]. Transactions of the Chinese Society of Agricultural Machinery, 2010, 41(9): 85-89.
[13] 闫桂焕, 许敏, 许崇庆, 等. 考虑焦油的生物质气化过程热力学模型[J]. 农业工程学报, 2013, 29(S1): 230-234.
YAN G H, XU M, XU C Q, et al.Thermodynamic model of biomass gasification process considering tar[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(S1): 230-234.
[14] TARALAS G, KONTOMINAS M G, KAKATSIOS X.Modeling the thermal destruction of toluene (C7H8) as tar-related species for fuel gas cleanup[J]. Energy fuels, 2003, 17(2): 329-337.
[15] PARK H J, PARK S H, SOHN J M, et al.Steam reforming of biomass gasification tar using benzene as a model compound over various Ni supported metal oxide catalysts[J]. Bioresource technology, 2010, 101(1): S101-S103.
[16] JABLONSKI W, GASTON K R, NIMLOS M R, et al.Pilot-scale gasification of corn stover, switchgrass, wheat straw, and wood: 2. identification of global chemistry using multivariate curve resolution techniques[J]. Industrial and engineering chemistry research, 2009, 48(23): 10691-10701.
[17] CHEN Y H, PARVEZ A M, SCHMID M, et al.Reforming of tar model compounds over sustainable and low-cost biochar: special focus on spontaneous gasification reactivity and tar reforming kinetics for reformer design[J]. Chemical engineering journal, 2020, 408: 127350.
[18] LI X T, GRACE J R, LIM C J, et al.Biomass gasification in a circulating fluidized bed[J]. Biomass bioenergy, 2004, 26(2): 171-193.
[19] 孙玉希, 宋若静, 刘勇, 等. 物理化学[M]. 北京: 化学工业出版社, 2016: 470-486.
SUN Y X, SONG R J, LIU Y, et al.Physical chemistry[M]. Beijing: Chemical Industry Press, 2016: 470-486.
[20] 何杰, 邵国泉, 刘锦, 等. 物理化学[M]. 北京: 化学工业出版社, 2018, 409-412.
HE J, SHAO G Q, LIU J, et al.Physical chemistry[M]. Beijing: Chemical Industry Press, 2018, 409-412.
[21] VILLETTA M L, COSTA M, MASSAROTTI N.Modelling approaches to biomass gasification: a review with emphasis on the stoichiometric method[J]. Renewable and sustainable energy reviews, 2017, 74: 71-88.
[22] SIMONE M, BARONTINI F, NICOLELLA C, et al.Gasification of pelletized biomass in a pilot scale downdraft gasifier[J]. Bioresource technology, 2012, 116: 403-412.
[23] MASMOUDI M A, HALOUANI K, SAHRAOUI M.Comprehensive experimental investigation and numerical modeling of the combined partial oxidation-gasification zone in a pilot downdraft air-blown gasifier[J]. Energy conversion and management, 2017, 144(1): 34-52.
[24] ARUN K, RAMANAN M V, GANESH S S.Stoichiometric equilibrium modeling of corn cob gasification and validation using experimental analysis[J]. Energy fuels, 2016, 30(9): 7435-7442.
[25] AYDIN E S, YUCEL O, SADIKOGLU H.Experimental study on hydrogen-rich syngas production via gasification of pine cone particles and wood pellets in a fixed bed downdraft gasifier[J]. International journal of hydrogen energy,2019,44(32): 17389-17396.
[26] 孟凡彬, 王贵路, 李晓伟, 等. 高当量比生物质氧气气化试验研究[J]. 太阳能学报, 2013, 34(3): 377-381.
MENG F B, WANG G L, LI X W, et al.Experimental study on oxygen gasification of biomass with high equivalence ratio[J]. Acta energia solaris sinica, 2013, 34(3): 377-381.
PDF(1603 KB)

Accesses

Citation

Detail

Sections
Recommended

/