WIND TURBINE POWER CURVE CONSTRUCTION BASED ON CORRELATION VECTOR INFORMATION ENTROPY

Fu Deyi, Gao Shiqiao, Kong Lingxing, Jia Haikun

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (5) : 252-259.

PDF(2805 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2805 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (5) : 252-259. DOI: 10.19912/j.0254-0096.tynxb.2021-0228

WIND TURBINE POWER CURVE CONSTRUCTION BASED ON CORRELATION VECTOR INFORMATION ENTROPY

  • Fu Deyi1,2, Gao Shiqiao1, Kong Lingxing2, Jia Haikun2
Author information +
History +

Abstract

Simulation is carried out to research the key influencing factors of wind turbine power output characteristics, such as turbulence intensity, air density, yaw error, and also the inner implicit relationship with the power curve, to establish the implicit relationship sub-model, and realize the construction of the wind turbine operating power curve based on the correlation vector information entropy technology and operation data. Comparison of annual energy production is carried between the constructed power curve and the actual output, which shows that construction method based on the correlation vector information entropy can realize the true evaluation of the operating power output characteristics of wind turbine, meanwhile the evaluation error is less than 2%.

Key words

wind turbines / correlation vector / information entropy / power curve construction

Cite this article

Download Citations
Fu Deyi, Gao Shiqiao, Kong Lingxing, Jia Haikun. WIND TURBINE POWER CURVE CONSTRUCTION BASED ON CORRELATION VECTOR INFORMATION ENTROPY[J]. Acta Energiae Solaris Sinica. 2022, 43(5): 252-259 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0228

References

[1] 林鹏, 赵书强, 谢宇琪, 等. 基于实测数据的风电功率曲线建模及不确定估计[J]. 电力自动化设备, 2015, 35(4): 90-95.
LIN P, ZHAO S Q, XIE Y Q, et al.Wind power curve modeling based on measured data and uncertainty estimation[J]. Electric power automation equipment, 2015, 35(4): 90-95.
[2] 王新, 王政霞. 基于改进bin算法的风电机组风速-功率数据清洗[J]. 智能科学与技术学报, 2020, 2(1): 62-71.
WANG X, WANG Z X.Wind speed-power data cleaning of wind turbine based on improved bin algorithm[J]. Chinese journal of intelligent science and technology, 2020, 2(1): 62-71.
[3] 解加盈, 郭鹏. 基于多变量选择的深度神经网络功率曲线建模[J]. 华电技术, 2019, 41(8): 27-31+52.
XIE J Y, GUO P.Deep neural network modeling on power curve based on multi-variable selection[J]. Huadian technology, 2019, 41(8): 27-31, 52.
[4] 董兴辉, 张鑫淼, 张光, 等. 基于云模型的风电机组输出功率特性分析[J]. 机械工程学报, 2017, 53(22): 198-205.
DONG X H, ZHANG X M, ZHANG G,et al.Analysis of wind turbine output power characteristic based on cloud model[J]. Journal of mechanical engineering, 2017, 53(22): 198-205.
[5] 李航涛, 郭鹏, 杨锡运. 基于离散度分析的风电机组功率曲线绘制方法研究[J]. 太阳能学报, 2019, 40(1): 237-241.
LI H T, GUO P, YANG X Y.Research on wind turbine power curve drawing method based on discrete degree analysis[J]. Acta energiae solaris sinica, 2019, 40(1): 237-241.
[6] 胥佳, 李韶武, 王桂松, 等. 基于Change-Point的风电数据挖掘算法研究[J]. 太阳能学报, 2020, 41(5): 136-141.
XU J, LI SH W, WANG G S, et al.Wind turbine data mining algorithm based on change-point research[J]. Acta energiae solaris sinica, 2020, 41(5): 136-141.
[7] 韩花丽, 张根保, 杨微. 湍流强度对风电机组测量功率曲线的影响及修正[J]. 太阳能学报, 2015, 36(6): 1442-1447.
HAN H L, ZHANG G B, YANG W.Influence and adjustment of turbulence intensity on measured power curve of wind turbine[J]. Acta energiae solaris sinica, 2015, 36(6): 1442-1447.
[8] SHANNON C E.A mathematical theory of communication[J]. Mobile computing and communications review, 2001, 5(1): 3-55.
[9] 邬超, 朱桂萍, 钱敏慧. 基于信息熵的历史数据选取对超短期风电功率预测精度影响研究[J]. 电网技术, 2021, 38(1): 1-7.
WU C, ZHU G P, QIAN M H, etc. Research on the impact of historical data selection on the accuracy of ultra-short-term wind power prediction based on prediction information entropy[J]. Power system technology, 2021, 38(1): 1-7.
[10] 房海滕. 多源信息融合中连续变量离散化及权重分配算法的研究[D]. 济南: 山东大学, 2017.
FANG H T.The research on discretization of continuous variables and weight assignment in multi-source information fusion[D]. Ji’nan: Shandong University, 2017.
[11] 杨茂, 杨琼琼. 基于云分段最优熵算法的风电机组异常数据识别研究[J]. 中国电机工程学报, 2018, 38(8): 2294-2301.
YANG M, YANG Q Q.The identification research of the wind turbine abnormal data based on the cloud segment optimal entropy algorithm[J]. Proceedings of the CSEE, 2018, 38(8): 2294-2301.
[12] 薛扬, 秦世耀, 焦渤, 等. 湍流强度规格化风电机组测量功率曲线的方法研究[J]. 电气应用, 2016, 35(6): 68-71.
XUE Y, QIN S Y, JIAO B, et al.Wind turbine measured power curve turbulence normalization method[J]. Electrotechnical application, 2016, 35(6): 68-71.
[13] 李翠萍, 俞黎萍. 湍流强度修正风力发电机组功率曲线方法的研究[J]. 可再生能源, 2014, 32(4): 466-468.
LI C P, YU L P.Research on method for wind turbine power curve modification based on turbulence[J]. Renewable energy resources, 2014, 32(4): 466-468.
[14] 郭鹏, 姜漫利, 李航涛. 基于运行数据和高斯过程回归的风电机组发电性能分析与监测[J]. 电力自动化设备, 2016, 36(8): 10-15, 25.
GUO P, JIANG M L, LI H T.Performance analysis and monitoring based on SCADA data and gaussian process regression for wind turbine power generation[J]. Electric power automation equipment, 2016, 36(8): 10-15, 25.
[15] DAVIDE A, FRANCESCO C, FRANCESCO N.Wind turbine yaw control optimization and its impact on performance[J]. Machines, 2019, 41(7): 1-16.
[16] Wind energy generationsystems-Part 12-1: Power performance measurements of electricity producing wind turbines-IEC 61400-12-1-2017[S]. International Electrotechnical Commission, 2017.
PDF(2805 KB)

Accesses

Citation

Detail

Sections
Recommended

/