PERFORMANCE RESEARCH OF FUEL CELL POWER GENERATION SYSTEM BASED ON SOLAR THERMAL DRIVEN METHANE REFORMING FOR HYDROGEN PRODUCTION

Li Yongxia, Duan Liqiang, Pan Pan, Guo Yaofei

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (9) : 131-138.

PDF(1871 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1871 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (9) : 131-138. DOI: 10.19912/j.0254-0096.tynxb.2021-0239

PERFORMANCE RESEARCH OF FUEL CELL POWER GENERATION SYSTEM BASED ON SOLAR THERMAL DRIVEN METHANE REFORMING FOR HYDROGEN PRODUCTION

  • Li Yongxia, Duan Liqiang, Pan Pan, Guo Yaofei
Author information +
History +

Abstract

The paper builds a membrane reactor reforming hydrogen production and fuel cell power generation system model by Aspen plus. According to the change of direct solar radiation intensity DNI on a certain day in Lhasa, the available energy of solar energy is calculated and used as an external heat source to input the fuel cell power generation system. The effects of reaction temperature, steam-to-carbon ratio (S/C) and the solar direct normal irradiance (DNI) on the performance indicators of the system are analyzed. The performance indicators include methane conversion rate, H2 product yield, output power and voltage of fuel cell, the solar-chemical energy conversion efficiency. The results show that when the reaction temperature is 500 ℃ and the S/C is 2.5, it is conducive to solar methane reforming. The daily system performance results show that from 10 am to 20 pm on a typical day, the system output power is 120 kW, the solar-chemical energy conversion efficiency is 0.368, and the system power generation efficiency is 0.225.

Key words

solar energy / thermochemical energy storage / fuel cells / methane reforming / membrane reactor

Cite this article

Download Citations
Li Yongxia, Duan Liqiang, Pan Pan, Guo Yaofei. PERFORMANCE RESEARCH OF FUEL CELL POWER GENERATION SYSTEM BASED ON SOLAR THERMAL DRIVEN METHANE REFORMING FOR HYDROGEN PRODUCTION[J]. Acta Energiae Solaris Sinica. 2022, 43(9): 131-138 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0239

References

[1] 金健, 林鹏翥, 李建兰, 等. 太阳能甲烷重整热化学互补发电系统性能研究[J]. 工程热物理学报, 2020, 41(2): 261-265.
JIN J, LIN P Z, LI J L, et al.Research on the performance of solar methane reforming thermochemical complementary power generation system[J]. Journal of engineering thermophysics, 2020, 41(2): 261-265
[2] 金健. 聚光太阳能燃料转化机理研究[D]. 北京: 中国科学院大学(中国科学院工程热物理研究所), 2019.
JIN J.Research on the mechanism of concentrating solar fuel conversion[D]. Beijing: University of Chinese Academy of Sciences (Institute of Engineering Thermophysics, Chinese Academy of Sciences), 2019.
[3] ELYSIA J S, ESMAIL M A M, AHMED F G. A review of solar methane reforming systems[J]. International journal of hydrogen energy, 2015, 40(38) : 12929-12955.
[4] 乐龙. 回收CO2的MCFC复合动力系统设计与优化研究[D]. 北京: 华北电力大学, 2016.
LE L.Design and optimization of MCFC hybrid power system for CO2 recovery[D]. Beijing: North China Electric Power University, 2016.
[5] LI Y Y, ZHANG N, CAI R X.Low CO2 -emissions hybrid solar combined-cycle power system with methane membrane reforming[J]. Energy, 2013, 58(1): 36-44.
[6] 李元媛, 张娜, 蔡睿贤. 控制CO2的太阳能/甲烷互补系统热力经济性研究[J]. 工程热物理学报, 2013, 34(10): 1807-1812.
LI Y Y, ZHANG N, CAI R X.Study on the thermal economics of the solar energy/methane complementary system controlling CO2[J]. Journal of engineering thermophysics, 2013, 34(10): 1807-1812.
[7] 王宏圣. 基于选择性膜分离的太阳能热化学系统研究[D]. 北京: 中国科学院工程热物理研究所, 2017.
WANG H S.Research on solar thermochemical system based on selective membrane separation[D]. Beijing:Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2017.
[8] STEINFELD A, PALUMBO R.Solar thermochemical process technology[J]. Encyclopedia of physical science and technology, 2001, 15(1): 237-256
[9] DUDLEY V E, KOLB G J, SLOAN M, et al.SEGS LS-2 solar collector[R]. United States: Sandia National Laboratories, 1994.
[10] ANGELO B, LUCA P.An experimental study of multilayered composite palladium membrane reactors for partial oxidation of methane to syngas[J]. Catalysis today, 2001, 67(1) : 55-64.
[11] YE G Y, XIE D, QIAO W, et al.Modeling of fluidized bed membrane reactors for hydrogen production from steam methane reforming with Aspen Plus[J]. International journal of hydrogen energy, 2009, 34(11): 4755-4762.
[12] 朱琳琳, 桂建舟, 鲁辉. 钯膜及其在涉氢反应中的应用研究进展[J]. 工业催化, 2012, 20(10): 8-13.
ZHU L L, GU J Z, LU H.Palladium membrane and its application in hydrogen-related reactions[J]. Industrial catalysis, 2012, 20(10): 8-13.
[13] JACOB B, JABBARI F, LEA E M, et al.Analysis of a molten carbonate fuel cell: numerical modeling and experimental validation[J]. Journal of power sources, 2005, 158(1) : 213-224.
[14] MURAT B, HUSNU A.A basic model for analysis of molten carbonate fuel cell behavior[J]. Journal of power sources, 2007, 172(2) : 831-839.
[15] HAO H L, ZHANG H S, WEN S L, et al.Dynamic numerical simulation of a molten carbonate fuel cell[J]. Journal of power sources, 2006, 161(2) : 849-855.
[16] 张杰. 膜反应器中甲烷催化重整制氢特性研究[D]. 重庆:重庆大学, 2013.
ZHANG J.Study on the characteristics of hydrogen production by catalytic reforming of methane in a membrane reactor[D]. Chongqing: Chongqing University, 2013.
[17] 范峻铭, 洪慧, 张浩, 等. 中温太阳能驱动甲烷化学链重整冷热电系统及性能研究[J]. 工程热物理学报, 2018, 39(3): 465-470.
FAN J M, HONG H, ZHANG H, et al.Medium temperature solar energy-driven methane chemical chain reforming cold-heat-electric system and performance research[J]. Journal of engineering thermophysics, 2018, 39(3): 465-470.
[18] 段立强, 孙思宇, 卞境, 等. 集成氧离子传输膜的CO2零排放IGCC系统研究[J]. 中国电机工程学报, 2014, 34(23): 3874-3882.
DUAN L Q, SUN S Y, BIAN J, et al.Research on CO2 zero emission IGCC system with integrated oxygen ion transport membrane[J]. Proceedings of the CSEE, 2014, 34(23): 3874-3882.
PDF(1871 KB)

Accesses

Citation

Detail

Sections
Recommended

/