ANALYSIS OF EFFECT OF LAYUP MATERIAL LAYER THICKNESS ON LOW-ORDER MODEL FREQUENCY OF WIND TURBINE BLADES

Zheng Yuqiao, Ma Huidong, Lu Bingxi

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (9) : 337-342.

PDF(3366 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3366 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (9) : 337-342. DOI: 10.19912/j.0254-0096.tynxb.2021-0271

ANALYSIS OF EFFECT OF LAYUP MATERIAL LAYER THICKNESS ON LOW-ORDER MODEL FREQUENCY OF WIND TURBINE BLADES

  • Zheng Yuqiao, Ma Huidong, Lu Bingxi
Author information +
History +

Abstract

The effect of single-layer thickness of layup material on the modal frequency of large wind turbine blades is studied to investigate the coupling mechanism of single-layer thickness of layup material. By using the Box-Behnken method to design experiments, the response surface model between the single-layer thickness of the blade ply material and the first-order modal frequency is established to reveal the influence of the single-layer thickness of different ply materials on the modal frequency of the blade. Further, an optimization mathematical model with the first two orders of the blade modal frequency as the optimal target and the single-layer thickness of the layup material as the design variable is proposed, which uses a combination of genetic algorithm and finite element method for global optimization. The results show that the first-order falpwise and edgewise frequencies of the blade are increased by 0.07 Hz after optimization.

Key words

wind turbines / blades / sensitivity analysis / modal analysis / single thickness / response surface model

Cite this article

Download Citations
Zheng Yuqiao, Ma Huidong, Lu Bingxi. ANALYSIS OF EFFECT OF LAYUP MATERIAL LAYER THICKNESS ON LOW-ORDER MODEL FREQUENCY OF WIND TURBINE BLADES[J]. Acta Energiae Solaris Sinica. 2022, 43(9): 337-342 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0271

References

[1] ZHENG Y Q, MA H D, WEI J F, et al.Robust optimization for composite blade of wind turbine based on kriging model[J]. Advanced composites letters, 2020, 29: 1-8.
[2] BARBU L G, OLLER S, MARTINEZ X, et al.High-cycle fatigue constitutive model and aload-advance strategy for the analysis of unidirectional fiber reinforced composites subjected to longitudinal loads[J]. Composite structures, 2019, 220: 622-641.
[3] 赵清鑫, 张兰挺. 基于径向基神经网络的风力机叶片铺层优化[J]. 太阳能学报, 2020, 41(4): 229-234.
ZHAO Q X, ZHANG L T.Ply parameter optimization of wind turbine blade based on radial basis function netural network[J]. Acta energiae solaris sinica, 2020, 41(4): 229-234.
[4] 张文广, 韩越, 王奕枫, 等. 基于改进DMC的风力机智能叶片多目标襟翼控制[J]. 太阳能学报, 2019, 40(3): 600-607.
ZHANG W G, HAN Y, WANG Y F, et al.Improved DMC-based smart blade multi-target flap control of wind turbine[J]. Acta energiae solaris sinica, 2019, 40(3): 600-607.
[5] FAGAN E, FLANAGAN M, LEEN S, et al.Physical experimental static testing and structural design optimisation for a composite wind turbine blade[J]. Composite structures, 2017, 164: 90-103.
[6] 田德, 罗涛, 林俊杰, 等. 基于额定载荷的10 MW海上风电叶片铺层优化[J].太阳能学报, 2018, 39(8): 2195-2202.
TIAN D, LUO T, LIN J J, et al.Optimization design of composite laminate material layers for 10 MW offshore wind turbine blade based on rated load[J]. Acta energiae solaris sinica, 2018, 39(8): 2195-2202.
[7] 汪泉, 陈进, 王君, 等. 气动载荷作用下复合材料风力机叶片结构优化设计[J]. 机械工程学报, 2014, 50(9): 114-121.
WANG Q, CHEN J, WANG J, et al.Structural optimization of composite wind turbine blade under aerodynamic loads[J]. Journal of mechanical engineering, 2014, 50(9): 114-121.
[8] CHAN C M, BAI H L, HE D Q.Blade shape optimization of the Savonius wind turbine using a genetic algorithm[J]. Applied energy, 2018, 213: 148-157.
[9] 郑玉巧, 赵荣珍, 刘宏. 大型风力机叶片气动与结构耦合优化设计研究[J]. 太阳能学报, 2015, 36(8): 1812-1817.
ZHENG Y Q, ZHAO R Z, LIU H.Research on optimization design of aerodynamic and structural coupling in large-scale wind turbine blade[J]. Acta energiae solaris sinica, 2015, 36(8): 1812-1817.
[10] MANDELL J F, SAMBORSKY D D.DOE/MSU composite material fatigue database: test methods, materials, and analysis[M]. Albuquerque: Sandia National Laboratories, 1997.
[11] GL Wind2010, Guideline for the certification of wind turbines[S].
PDF(3366 KB)

Accesses

Citation

Detail

Sections
Recommended

/