USST HIGH PERFORMANCE AIRFOIL FAMILY FOR HORIZONTAL AXIS WIND TURBINE

Zhang Qianying, Yin Penghui, Liu Zhaofang, Huang Diangui

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (10) : 289-295.

PDF(1865 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1865 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (10) : 289-295. DOI: 10.19912/j.0254-0096.tynxb.2021-0273

USST HIGH PERFORMANCE AIRFOIL FAMILY FOR HORIZONTAL AXIS WIND TURBINE

  • Zhang Qianying1,2, Yin Penghui1,2, Liu Zhaofang1,2, Huang Diangui1,2
Author information +
History +

Abstract

Combining the characteristics of laminar airfoil and blunt trailing edge, the airfoil is parametrically modified by Hicks-Henne type function. Based on the multi-island genetic algorithm and Xfoil aerodynamic analysis, the optimal design under multi-objective functions, multiple design conditions and multiple constraints conditions is carried out for the airfoil of large horizontal axis wind turbines. By doing that, a high-performance airfoil family(USST airfoil family) suitable for large wind turbines is obtained. Its lift-drag ratio is higher than that of the existing wind turbine airfoil families such as the FFA and DU series at most angles of attack. The lift coefficient has a larger lift-to-drag ratio, especially in the case of a high lift coefficient. Finally, in order to evaluate the optimized design of the airfoil family, based on the turbulence transition model (Transition SST), the optimization results are verified by the numerical simulation method, which proves that the new wind turbine airfoil family designed in this paper has superior aerodynamic performance.

Key words

wind turbines / horizontal axis / airfoil / blunt trailing edge / aerodynamic performance / blade optimization

Cite this article

Download Citations
Zhang Qianying, Yin Penghui, Liu Zhaofang, Huang Diangui. USST HIGH PERFORMANCE AIRFOIL FAMILY FOR HORIZONTAL AXIS WIND TURBINE[J]. Acta Energiae Solaris Sinica. 2022, 43(10): 289-295 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0273

References

[1] 庄月晴. Magnus效应作用下的风力机气动性能及流动控制的数值研究[D]. 上海: 上海大学, 2012.
ZHUANG Y Q.Numerical studies on the aerodynamic performance and flow control of the wind turbines with the Magnus effect[D]. Shanghai: Shanghai University, 2012.
[2] 战培国. 国外航空气动技术在风力机上的应用进展[J].航空科学技术, 2016, 27(10): 8-11.
ZHAN P G.Application of aerodynamic technology in wind turbine abroad[J]. Aeronautical science & echnology, 2016, 27(10): 8-11.
[3] 乔志德, 宋文萍, 高永卫. NPU-WA系列风力机翼型设计与风洞实验[J]. 空气动力学学报, 2012, 30(2): 260-265.
QIAO Z D, SONG W P, GAO Y W.Design and experiment of the NPU-WA airfoil family for wind turbines[J]. Acta aerodynamica sinica, 2012, 30(2): 260-265.
[4] TANFLER J L, SOMERS D M.NREL airfoil families for HAWTs[M]. National Renewable Energy Laboratory, 1995.
[5] PETER F, CHRISTAIN B.Development of the Risø wind turbine airfoils[J]. Wind energy, 2004, 7(2): 145-162.
[6] AIAA. Summary of the delft university wind turbine dedicated airfoils[J]. Journal of solar energy engineering, 2003, 125(4):11-21.
[7] 李新凯, 戴丽萍, 康顺. 风力机大厚度翼型增升减阻装置模拟研究[J]. 太阳能学报, 2015, 36(10): 2435-2441.
LI X K, DAI L P, KANG S.Simulation study of increase lift drag reduction device of large thickness airfoil of wind turbine[J]. Acta energiae solaris sinica, 2015, 36(10): 2435-2441.
[8] VAN D C P, MAYDA E, CHAO D, et al. Innovative structural and aerodynamic design approaches for large wind turbine blades[C]//2005 ASME Wind Energy Symposium/The 43th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, USA, 2005: 68-98.
[9] MAYDA E A, VAN D C P, CHAO D D, et al. Computational design and analysis of flatback airfoil wind tunnel experiment[R]. Sandia National Laboratories, 2008.
[10] STANDISH K J, VAN D C P. Aerodynamic analysis of blunt trailing edge airfoils[J]. Journal of solar energy engineering, 2003, 125(4): 479-487.
[11] 马林静, 陈江, 杜刚, 等. 尾缘厚度对风力机翼型气动特性影响参数化研究[J]. 太阳能学报, 2010, 31(8): 1060-1067.
MA L J, CHEN J, DU G, et al.Influence of trailing edge thickness on aerodynamic characteristics of wind turbine wing[J]. Acta energiae solaris sinica, 2010, 31(8): 1060-1067.
[12] JOSLIN R D.Overview of laminar flow control[R]. NASA TP-208705, 1998.
[13] JUN Z, ZHENG H G, HAO Z, et al.A high-speed nature laminar flow airfoil and its experimental study in wind tunnel with nonintrusive measurement technique[J]. Chinese journal of aeronautics, 2009, 22(3): 225-229.
[14] REDEKER G, HORSTMAN K H, KöSTER H, et al. Investigations on high reynolds number laminar flow airfoils[J]. Journal of aircraft, 1988, 25(7): 583-590.
[15] HICKS R M, HENNE P A.Wing design by numerical optimization[J]. Journal of aircraft, 1978, 15(7): 407-412.
[16] 吴志学. 水平轴风电机组叶片翼型气动性能优化研究[D]. 北京: 华北电力大学, 2019.
WU Z X.Aerodynamic performance optimization of horizontal axis wind turbine airfoil[D]. Beijing: North China Electric Power University, 2019.
PDF(1865 KB)

Accesses

Citation

Detail

Sections
Recommended

/