RESPONSE ANALYSIS OF FLOATING WIND TURBINE WITHCOUNTERWEIGHT MOORING UNDER EXTREME SEA CONDITIONS

Li Shujun, Liu Qingsong, Li Chun, Yan Yangtian

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (12) : 415-422.

PDF(1889 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1889 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (12) : 415-422. DOI: 10.19912/j.0254-0096.tynxb.2021-0280

RESPONSE ANALYSIS OF FLOATING WIND TURBINE WITHCOUNTERWEIGHT MOORING UNDER EXTREME SEA CONDITIONS

  • Li Shujun1, Liu Qingsong1, Li Chun1,2, Yan Yangtian1
Author information +
History +

Abstract

In order to improve the platform stability and reduce the risk of anchor lifting, the method of adding counterweight on mooring system is proposed. Based on radiation/diffraction theory and finite element method, the dynamic response of Barge platform, the mooring force and variation of the lying length before and after adding counterweight are compared, and the influence of counterweight position is studied. The results show that, on the premise of ensuring mooring safety, adding counterweight can effectively reduce the platform’s surge, heave and pitch response while the lying length of mooring is increased. When the counterweight is about 160 meters away from the anchor point, the dynamic response of the platform is smallest while the lying length is largest, and the dynamic response amplitude of surge, heave and pitch response are decreased by 41.9%, 20.4% and 11.8% respectively. In addition, the lying length of No.1-No.4 moorings are 12.9, 2.0, 1.9 and 0.9 times of that without counter weight, the tension increases slightly, but still within the safe range. No.1 mooring’s lying length (windward side) is the smallest while the risk of anchor lifting is the highest. No.4 mooring (backwind wave side) shortens the lying length and increases the risk of anchor lifting after adding counterweight.

Key words

offshore wind power / floating wind turbines / dynamic response / mooring / barge platform / counterweight

Cite this article

Download Citations
Li Shujun, Liu Qingsong, Li Chun, Yan Yangtian. RESPONSE ANALYSIS OF FLOATING WIND TURBINE WITHCOUNTERWEIGHT MOORING UNDER EXTREME SEA CONDITIONS[J]. Acta Energiae Solaris Sinica. 2022, 43(12): 415-422 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0280

References

[1] WEINZETTEL J, REENAAS M, SOLLI C, et al.Life cycle assessment of a floating offshore wind turbine[J]. Renewable energy, 2009, 34(3): 742-747.
[2] 刘中胜, 杨阳, 李春, 等. 基于TMD控制的风力机结构抗震研究[J]. 机械强度, 2019, 41(4): 785-791.
LIU Z S, YANG Y, LI C, et al.Anti-seismic study of wind turbine structure based on TMD[J]. Journal of mechanical strength, 2019, 41(4): 785-791.
[3] GWEC. Global wind report 2019[R]. Brussels: Global Wind Energy Council, 2019.
[4] 韩志伟, 周红杰, 李春, 等. 船舶碰撞下海上风力机基础与土层耦合动态分析[J]. 机械强度, 2020, 42(2): 384-391.
HAN Z W, ZHOU H J, LI C, et al.Dynamic analyses of soil-structure interaction in offshore wind turbine on tripod impacted by a ship[J]. Journal of mechanical strength, 2020, 42(2): 384-391.
[5] WANG B, XU Z F, LI C, et al.Hydrodynamic characteristics of forced oscillation of heave plate with fractal characteristics based on floating wind turbine platform[J]. Ocean engineering, 2020, 212: 107621.
[6] 单鹏昊. 深海浮式平台及其系泊缆索的时域耦合分析[D]. 哈尔滨: 哈尔滨工程大学, 2013.
SHAN P H.Time-domain coupling analysis of deepwater floating platform and the mooring lines[D]. Harbin: Harbin Engineering University, 2013.
[7] ZHANG L, SHI W, KARIMIRAD M, et al.Second-order hydrodynamic effects on the response of three semisubmersible floating offshore wind turbines[J]. Ocean engineering, 2020, 207: 107371.
[8] 葛沛. 海上浮式风力机平台选型与结构设计[D]. 哈尔滨: 哈尔滨工程大学, 2012.
GE P.Study on the structural design and selection of floating foundation of offshore wind turbine[D]. Harbin: Harbin Engineering University, 2012.
[9] 黄致谦, 丁勤卫, 李春, 等. 新型漂浮式风力机半潜平台抑制摇荡运动设计研究[J]. 中国电机工程学报, 2018, 38(24): 185-193, 346.
HUANG Z Q, DING Q W, LI C, et al.Design and research on suppression swaying motion of the new semi-submersible platform of floating wind turbine[J]. Proceedings of the CSEE, 2018, 38(24): 185-193, 346.
[10] CHENG Z, MADSEN H A, CHAI W, et al.A comparison of extreme structural responses and fatigue damage of semi-submersible type floating horizontal and vertical axis wind turbines[J]. Renewable energy, 2017, 108: 207-219.
[11] 王志新. 海上风力发电技术[M]. 北京: 机械工业出版社,2013.
WANG Z X.Offshore wind power technology[M]. Beijing: China Machine Press, 2013.
[12] SHIN H.Dynamic analysis of cable with intermediate submerged buoys for offshore applications[J]. Journal of comparative neurology, 1989, 3(2): 526-534.
[13] OIKONOMOU C L G, GOMES R P F, GATO L M C, et al. On the dynamics of an array of spar-buoy oscillating water column devices with inter-body mooring connections[J]. Renewable energy, 2020, 148: 309-325.
[14] XU S, JI C, GUEDES S C.Experimental study on taut and hybrid moorings damping and their relation with system dynamics[J]. Ocean engineering, 2018, 154(15): 322-340.
[15] 张亮, 李辉, 马勇, 等. 一种组合系泊系统及其系泊特性影响研究[J]. 船舶力学, 2016, 20(3): 306-314.
ZHANG L, LI H, MA Y, et al.A combination mooring system and mooring characteristics study[J]. Journal of ship mechanics, 2016, 20(3): 306-314.
[16] 吴澜. 半潜平台带浮子的系泊系统特性计算分析与参数优化研究[D]. 北京: 中国舰船研究院, 2014.
WU L.Study on the character analysis and parameters optimization for the mooring system with buoys of a semi-submersible platform[D]. Beijing: China Ship Research and Development Academy, 2014.
[17] 吴澜, 匡晓峰, 范亚丽, 等. 半潜平台浮子式系泊系统参数优化研究[J]. 海洋工程, 2016, 34(4): 30-37.
WU L, KUANG X F, FAN Y L, et al.Study on the parameters optimization for the mooring system with buoys of a semi-submersible[J]. The ocean engineering, 2016, 34(4): 30-37.
[18] JONKMAN J, MATHA D.Quantitative comparison of the responses of three floating platforms[J]. Australian historical studies, 2010, 32(3): 351-355.
[19] JONKMAN J, MATHA D.Dynamics of offshore floating wind turbines — analysis of three concepts[J]. Wind energy, 2011, 14(4): 557-569.
[20] 吴攀, 李春, 叶舟, 等. 粗糙度对风力机专用翼型气动性能影响[J]. 流体机械, 2014, 42(1): 17-21, 62.
WU P, LI C, YE Z, et al.Influence of roughness on aerodynamic performance of dedicated wind turbine airfoil[J]. Fluid machinery, 2014, 42(1): 17-21, 62.
[21] 袁全勇, 李春, 杨阳, 等. 基于分形学的湍流风谱特性对比研究[J]. 热能动力工程, 2017, 32(5): 118-124.
YUAN Q Y, LI C, YANG Y, et al.A comparative Study of turbulent wind spectrum characteristics based on fractal theory[J]. Journal of engineering for thermal energy and power, 2017, 32(5): 118-124.
[22] 叶柯华, 李春, 王渊博, 等. 湍流风与浮冰联合作用下近海风力机动力学响应[J]. 热能动力工程, 2019, 34(9): 123-131.
YE K H, LI C, WANG Y B, et al.Dynamic response of offshore wind turbine under the combined load of turbulent wind and floating ice[J]. Journal of engineering for thermal energy and power, 2019, 34(9): 123-131.
[23] 丁勤卫, 李春, 王东华, 等. 漂浮式风力机的结构动力学响应[J]. 水资源与水工程学报, 2015, 26(4): 169-176.
DING Q W, LI C, WANG D H, et al.Response of structural dynamics of floating wind turbine[J]. Journal of water resources and water engineering, 2015, 26(4): 169-176.
[24] YUAN Z M, INCECIK A, JI C.Numerical study on a hybrid mooring system with clump weights and buoys[J]. Ocean engineering, 2014, 88: 1-11.
[25] 贝尔纳·莫林. 海洋工程水动力学[M]. 北京: 国防工业出版社, 2012.
MORIN B.Hydrodynamicque des structures offshore[M]. Beijing: National Defense Industry Press, 2012.
[26] OGILVIE T F.Second order hydrodynamic effects on ocean platforms[C]//International Workshop on Ship and Platform Motion, Berkeley, CA, USA, 1983: 205-265.
[27] MARUO H.The drift of a body floating on waves[J]. Journal of ship research, 1960(4): 1-10.
[28] NEWMAN J N.The drift force and moment on ships in waves[J]. Journal of ship research, 1967, 11(1): 51-60.
[29] 高巍. ANSYS AQWA软件入门与提高[M]. 北京: 中国水利水电出版社, 2018.
GAO W.ANSYS AQWA software entry and improvement[M]. Beijing: China Water & Power Press, 2018.
PDF(1889 KB)

Accesses

Citation

Detail

Sections
Recommended

/