FREQUENCY CONTROL STRATEGY OF DOUBLY-FED WIND GENERATORS CONSIDERING GRID FREQUENCY DEVIATION

Xu Yien, Yang Dejian, Zheng Taiying, Zhang Xinsong, Hua Liang

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (10) : 229-235.

PDF(2932 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2932 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (10) : 229-235. DOI: 10.19912/j.0254-0096.tynxb.2021-0340

FREQUENCY CONTROL STRATEGY OF DOUBLY-FED WIND GENERATORS CONSIDERING GRID FREQUENCY DEVIATION

  • Xu Yien1, Yang Dejian1, Zheng Taiying2, Zhang Xinsong1, Hua Liang1
Author information +
History +

Abstract

When a large distur bance occurs in the power system,the existing droop control method of doubly-fed induction generators (DFIGs) are unable to fully utilize its rotating kinetic energy to provide frequency response service for the power grid. This paper proposed a frequency control method with variable droop control coefficient considering the system frequency deviation. The proposed method couples the variable droop control coefficient with the system frequency deviation so as to regulate the control coefficient according to the frequency deviation and further realizes that the DFIGs provide frequency support for the power system with more efficiency under severe disturbances. The power system model with high wind power penetration is established by using EMTP-RV simulation platform. The simulation results show that DFIGs can effectively improve frequency response capability and reduce the maximum frequency deviation when different disturbances occur in the power system,especially in the case of a severe disturbance.

Key words

wind power / wind turbines / electric grid frequency regulation / variable droop coefficient / frequency response

Cite this article

Download Citations
Xu Yien, Yang Dejian, Zheng Taiying, Zhang Xinsong, Hua Liang. FREQUENCY CONTROL STRATEGY OF DOUBLY-FED WIND GENERATORS CONSIDERING GRID FREQUENCY DEVIATION[J]. Acta Energiae Solaris Sinica. 2022, 43(10): 229-235 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0340

References

[1] 汪宁渤, 马明, 强同波, 等. 高比例新能源电力系统的发展机遇、挑战及对策[J]. 中国电力, 2018, 51(1): 29-35, 50.
WANG N B, MA M, QIANG T B, et al.High-penetration new energy power system development: challenges, opportunities and countermeasures[J]. Electric power, 2018, 51(1): 29-35, 50.
[2] 陈国平, 董昱, 梁志峰. 能源转型中的中国特色新能源高质量发展分析与思考[J]. 中国电机工程学报, 2020, 40(17): 5493-5506.
CHEN G P, DONG Y, LIANG Z F.Analysis and reflection on high-quality development of new energy with Chinese characteristics in energy transition[J]. Proceedings of the CSEE, 2020, 40(17): 5493-5506.
[3] 陈国平, 李明节, 许涛, 等. 关于新能源发展的技术瓶颈研究[J]. 中国电机工程学报, 2017, 37(1): 20-26.
CHEN G P, LI M J, XU T, et al.Study on technical bottleneck of new energy development[J]. Proceedings of the CSEE, 2017, 37(1): 20-26.
[4] 唐晓骏, 蔡继朝, 马世英, 等. 双馈风电并网对电力系统频率响应的影响[J]. 电力系统及其自动化学报, 2020, 32(10): 37-43.
TANG X J, CAI J Z, MA S Y, et al.Effects of DFIG wind power grid-connection on frequency response of power system[J]. Proceedings of the CSU-EPSA, 2020, 32(10): 37-43.
[5] 钟诚, 周顺康, 严干贵. 基于自适应系数风电场一次频率控制策略研究[J]. 太阳能学报, 2018, 39(10): 2908-2917.
ZHONG C, ZHOU S K, YAN G G, et al.Research on primary frequency regulation strategy of wind farm based on adaptive coefficients[J]. Acta energiae solaris sinica, 2018, 39(10): 2908-2917.
[6] 段士伟, 杨修宇, 柴仁勇, 等. 大规模风电接入的灵活性资源优化配置方法[J]. 东北电力大学学报, 2020, 40(6): 45-51.
DUAN S W, YANG X Y, CHAI R Y, et al.Optional configuration method of flexibility re-sources of high-penetration renewable energy[J]. Journal of Northeast Dianli University, 2020, 40(6): 45-51.
[7] 杨蕾, 王智超, 周鑫, 等. 大规模双馈风电机组并网频率稳定控制策略[J]. 中国电力, 2021, 54(5): 186-194.
YANG L, WANG Z C, ZHOU X, et al.Control strategy for frequency stability after large-scale DFIG connection[J]. Electric Power, 2021, 54(5): 186-194.
[8] 孙华东, 许涛, 郭强, 等. 英国“8·9”大停电事故分析及对中国电网的启示[J]. 中国电机工程学报, 2019, 39(21): 84-89.
SUN H D, XU T, GUO Q, et al.Analysis on blackout in Great Britain power grid on August 9th,2019 and its enlightenment to power grid in China[J]. Proceedings of the CSEE, 2019, 39(21): 84-89.
[9] 文云峰, 杨伟峰, 林晓煌. 低惯量电力系统频率稳定性分析与控制综述及展望[J]. 电力自动化设备, 2020, 40(9): 211-222.
WEN Y F,YANG W F, LIN X H.Review and prospect of frequency stability analysis and control of low-inertia power systems[J]. Electric power automation equipment, 2020, 40(9): 211-222.
[10] GB/T 19963——2011, 风电场接入电力系统技术规定[S].
GB/T 19963——2011, Technical specification for wind farm access to power system[S].
[11] EirGrid. EirGrid grid code version 3.4[DB/OL]. www.eirgrid.com.
[12] Nordic Grid.Nordic grid code 2007[R]. Norway: Nordic Grid, 2007.
[13] 张冠锋, 杨俊友, 孙峰, 等. 基于虚拟惯量和频率下垂控制的双馈风电机组一次调频策略[J]. 电工技术学报, 2017, 32(22): 225-232.
ZHANG G F, YANG J Y, SUN F, et al.Primary frequency regulation strategy of DFIG based on virtual inertia and frequency droop control[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 225-232.
[14] WU Y K, YANG W H, HU Y L, et al.Frequency regulation at a wind farm using a timing-varying inertia and droop controls[J]. IEEE transactions on industry applications, 2019, 55(1): 213-224.
[15] LI Y J, XU Z, WONG K P.Advance control strategies of PMSG-based wind turbines for system inertia support[J]. IEEE transactions on power systems, 2017, 32(4): 3027-3037.
[16] RAMTHARAN G, EKANAYAKE J B, NICK J.Frequency support from doubly-fed induction generator wind turbines[J]. IET renewable power generation, 2007, 1(1): 3-9.
[17] 范冠男, 刘吉臻, 孟洪民, 等. 电网限负荷条件下风电场一次调频策略[J]. 电网技术, 2016, 40(7): 2030-2037.
FAN G N, LIU J Z, MENG H M, et al.Primary frequency control strategy for wind farms under output-restricted condition[J]. Power system technology, 2016, 40(7): 2030-2037.
[18] LEE J, MULJADI E, POUL S, et al.Releasable kinetic energy-based inertial control of a DFIG wind power plant[J]. IEEE Transactions on power systems, 2016, 7(1): 279-288.
[19] HU Y L, WU Y K.Approximation to frequency control capability of a DFIG-based wind farm using a simple linear gain droop control[J]. IEEE transactions on industry applications, 2019, 55(3): 2300-2309.
[20] 何仰赞, 温增银. 电力系统分析[M]. 下册. 武汉: 华中科技大学出版社, 2006: 111-116.
HE Y Z, WEN Z Y.Power system analysis[M]. Volume II. Wuhan: Huazhong University of Science and Technology Press, 2006: 111-116.
PDF(2932 KB)

Accesses

Citation

Detail

Sections
Recommended

/