EFFECT OF SERRATED GURNEY FLAP ON NACA0018 AIRFOIL WAKE WITH LIUTEX IDENTIFICATION METHOD

Yu Yongdi, Chen Liu, Zheng Zhehui, Dai Ren

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (10) : 210-217.

PDF(2379 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2379 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (10) : 210-217. DOI: 10.19912/j.0254-0096.tynxb.2021-0343

EFFECT OF SERRATED GURNEY FLAP ON NACA0018 AIRFOIL WAKE WITH LIUTEX IDENTIFICATION METHOD

  • Yu Yongdi1, Chen Liu1,2, Zheng Zhehui1, Dai Ren1
Author information +
History +

Abstract

The wake flow of a NACA0018 airfoil is analyzed at the Reynolds number of 1.38×105 in a wind tunnel experiment to investigate the effect of a serrated Gurney flap. The wake structures of a serrated flap and a conventional fully spanned flap are compared to elucidate the flow control mechanism of serrated flap. Results show that the wake loss due to velocity deficit is obviously lower for the serrated flap at a small attack angle while the flow deflection gets reduced. A pair of counter-vortex is found with the Liutex identification method in the flow through the serrated flap, which gets mixed dissipation with the inherent streamwise vortex generated by the flap. It reduces the wake instability caused by the streamwise vortex and hence the resistance of the airfoil. Comparison of the flow at different tooth positions near the trailing edge shows an increase of velocity deviation angle from the tooth root to tip, For the far-field wake, the flow of the three sections is consistent.

Key words

wind turbines / flow control / vortex / serrated Gurney flap / Liutex

Cite this article

Download Citations
Yu Yongdi, Chen Liu, Zheng Zhehui, Dai Ren. EFFECT OF SERRATED GURNEY FLAP ON NACA0018 AIRFOIL WAKE WITH LIUTEX IDENTIFICATION METHOD[J]. Acta Energiae Solaris Sinica. 2022, 43(10): 210-217 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0343

References

[1] ANAGNOSTOPOULOU C, KAGEMOTO H, SAO K, et al.Concept design and dynamic analyses of a floating vertical-axis wind turbine:case study of power supply to offshore Greek islands[J]. Journal of ocean engineering and marine energy,2016, 2(1): 85-104.
[2] ISLAM M, TING D S K, FARTAJ A. Design of a special-purpose airfoil for smaller-capacity straight-bladed VAWT[J]. Wind engineering, 2007, 31(6): 401-424.
[3] LIANG C P, LI H X.Effects of optimized airfoil on vertical axis wind turbine aerodynamic performance[J]. Journal of the Brazilian society of mechanical sciences and engineering, 2018, 40(2): 88.
[4] LIEBECK R H.Design of subsonic airfoils for high lift[J]. Journal of aircraft, 1978, 15(9): 547-561.
[5] 杨瑞, 郭瑞, 张康康, 等. 襟翼高度对风力机气动性能影响[J]. 太阳能学报, 2020, 41(11): 254-259.
YANG R, GUO R, ZHANG K K, et al.Influence of flaps height on aerodynamic performance of wind turbines[J]. Acta energiae solaris sinica, 2020, 41(11): 254-259.
[6] 朱海天, 郝文鑫, 李春, 等. 格尼襟翼几何参数对垂直轴风力机气动性能的影响[J]. 热能动力工程, 2020, 35(10): 124-130.
ZHU H T, HAO W X, LI C, et al.Effect of geometry parameters of Gurney flap on the aerodynamic performance of vertical axis wind turbine[J]. Journal of engineering for thermal energy and power, 2020, 35(10): 124-130.
[7] 郝礼书, 乔志德, 宋文萍, 等. Gurney襟翼用于风力机叶片翼型气动载荷控制的数值模拟研究[J]. 太阳能学报, 2012, 33(12): 2159-2165.
HAO L S, QIAO Z D, SONG W P,et al.Wind-tunnel investigation of aerodynamic force for airfoil using Gurney flap[J]. Acta energiae solaris sinica, 2012, 33(12): 2159-2165.
[8] 张惠, 赵宗德, 周广鑫, 等. 格尼襟翼对DU93-W-210翼型气动性能影响的实验研究[J]. 太阳能学报, 2017, 38(3): 601-606.
ZHANG H, ZHAO Z D, ZHOU G X,et al.Experimental investigation of the effect of gurney flap on DU93-W-210 airfoil aerodynamics performance[J]. Acta energiae solaris sinica, 2017, 38(3): 601-606.
[9] TRAUB L W, ADAM C M, REDINIOTIS O.Preliminary parametric study of gurney-flap dependencies[J]. Journal of aircraft, 2006, 43(4): 1242-1244.
[10] LEE T, KO L S.PIV investigation of flowfield behind perforated Gurney-type flaps[J]. Experiments in fluids, 2009, 46(6): 1005-1019.
[11] MEYER R, HAGE W, BECHERT D W, et al.Drag reduction on Gurney flaps by three-dimensional modifications[J]. Journal of aircraft, 2006, 43(1):132-140.
[12] BECHERT D W, MEYER R, HAGE W.Drag reduction of airfoils with miniflaps. Can we learn from dragonflies?[C]//AIAA-Conference “Fluids 2000”, Denver, Colorado, USA, 2000.
[13] VIJGEN P M H, HOWARD F G, BUSHNELL D M, et al. Serrated trailing edge to enhance lift and drag of wing surface: US7429516-N[P].1992-02-17. https://ntrs.nasa.gov/citations/19920012344.
[14] 李亚臣, 王晋军, 张攀峰. 平板/锯齿型Gurney襟翼对NACA0012翼型增升实验研究[J]. 航空学报, 2003, 24(2): 119-123.
LI Y C, WANG J J, ZHANG P F.Aerodynamic characteristics of Gurney flaps under special atmospheric conditions[J]. Journal of aerospace power, 2003, 24(2): 119-123.
[15] 沈遐龄, 万周迎, 高歌. 锯齿形格尼襟翼气动性能的实验研究[J]. 北京航空航天大学学报, 2003, 29(3): 202-204.
SHEN X L, WAN Z Y, GAO G.Experimental study on aerodynamic performance of serrated Gurney flaps[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(3): 202-204.
[16] 叶忱, 张胜利, 刘博. 后缘锯齿襟翼对翼型气动特性的影响研究[J]. 飞行力学, 2015, 33(2): 150-152.
YE C, ZHANG S L, LIU B.Influence of trailing edge serrated flaps on aerodynamic characteristics of airfoil[J]. Flight dynamics, 2015, 33(2): 150-152.
[17] BACH A B, PECHLIVANOGLOU G, NAYERI C, et al.Wake vortex field of an airfoil equipped with an active finite gurney flap[C]//53rd AIAA Aerospace Sciences Meeting, Los Angeles, CA, USA, 2015.
[18] DELNERO J, JMD L, SAINZ M.Experimental study of near and far wake generated by a Gurney mini flap in turbulent flow[C]//34th Wind Energy Symposium, Las Vegas,NV, USA, 2016.
[19] GUI N, GE L, CHENG P.Comparative assessment and analysis of Rortex vortex in swirling jets[J]. Journal of hydrodynamics, 2019, 31(3): 495-503.
[20] 崔青, 钱晓辉, 刘剑明. 基于开源计算流体力学软件SU2的钝体翼尖涡研究[J]. 沈阳航空航天大学学报, 2020, 37(3): 24-32.
CUI Q, QIAN X H, LIU J M.Research on blunt body tip vortex based on open source CFD software SU2[J]. Journal of Shenyang Institute of Aeronautical Engineering, 2020, 37(3): 24-32.
[21] CASTELLI M R,ARDIZZON G,BATTISTI L,et al.Modeling strategy and numerical validation for a Darrieus vertical axis micro-wind turbine[C]//Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition, Vancouver, Canada, 2010.
[22] WANG Z Y, ZHUANG M.Leading-edge serrations for performance improvement on a vertical-axis wind turbine at low tip-speed-ratios[J]. Applied energy, 2017, 208: 1184-1197.
[23] 朱海天, 郝文星, 李春, 等. 格尼襟翼几何参数对垂直轴风力机气动性能的影响[J]. 热能动力工程, 2020, 35(10): 124-130.
ZHU H T, HAO W X,LI C, et al.Effect of geometry parameters of Gurney flap on the aerodynamic performance of vertical axis wind turbine[J]. Journal of engineering for thermal energy and power, 2020, 35(10): 124-130.
[24] GERAKOPULOS R, BOUTILIER M, YARUSEVYCH S.Aerodynamic characterization of a NACA 0018 airfoil at low Reynolds numbers[C]//40th Fluid Dynamics Conference and Exhibit, Chicago, IL, USA, 2010.
[25] LEE T.PIV study of near-field tip vortex behind perforated Gurney flaps[J]. Experiments in fluids, 2011, 50(2): 351-361.
[26] LIU C Q.Letter: Galilean invariance of Rortex[J]. Physics of fluids, 2018, 30(11): 111701.
[27] LIU C Q, GAO Y S, TIAN S L, et al.Rortex a new vortex vector definition and vorticity tensor and vector decompositions[J]. Physics of fluids, 2018, 30(3): 035103.
[28] LIU C Q, GAO Y S, DONG X R, et al.Third generation of vortex identification methods: omega and Liutex/Rortex based systems[J]. Journal of hydrodynamics, 2019, 31(2): 205-233.
[29] GAO Y S, LIU C Q.Rortex and comparison with eigenvalue-based vortex identification criteria[J]. Physics of fluids, 2018, 30(8): 085107.
[30] 宁方飞, 李一鸣. 一种压气机叶型的可控环量尾缘造型方法[J]. 航空动力学报, 2019, 34(1): 142-155.
NING F F, LI Y M.A method for controlled circulation trailing edge design of compressor blade[J]. Journal of aerospace power, 2019, 34(1): 142-155.
[31] TROOLIN D R, LONGMIRE E K.Time resolved PIV analysis of flow over a NACA 0015 airfoil with Gurney flap[J]. Experiments in fluids, 2006, 41(2): 241-254.
[32] SCHATZ M, BERT G, THIELE F.Computational modeling of the unsteady wake behind Gurney-flaps[C]//2nd AIAA Flow Control Conference, Oregon, Portland, 2004.
[33] 林黎明. 低雷诺数下钝体三维尾迹中的涡量符号律[J]. 物理学报, 2020, 69(3): 194-204.
LIN L M.Sign law of vorticity in three dimensional wakes of blunt bodies at low Reynolds numbers[J]. Acta physica sinica, 2020, 69(3): 194-204.
PDF(2379 KB)

Accesses

Citation

Detail

Sections
Recommended

/