MOLECULAR DYNAMICS SIMULATION RESEARCH OF THERMOPHYSICAL PROPERTIES OF CHLORIDE MOLTEN SALTS AND THEIR MIXTURES

Yang Xueming, Liu Jieting, Cui Jixiang, Zhang Mingli, Meng Fanxing

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (11) : 433-442.

PDF(1921 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1921 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (11) : 433-442. DOI: 10.19912/j.0254-0096.tynxb.2021-0525

MOLECULAR DYNAMICS SIMULATION RESEARCH OF THERMOPHYSICAL PROPERTIES OF CHLORIDE MOLTEN SALTS AND THEIR MIXTURES

  • Yang Xueming1, Liu Jieting1, Cui Jixiang2, Zhang Mingli1, Meng Fanxing1
Author information +
History +

Abstract

Comprehensive molecular dynamic simulations were carried out to compute the thermophysical properties of three commonly used chloride molten salts and their binary and ternary mixtures over a wide operating temperature range. The viscosities were calculated by the equilibrium molecular dynamics (EMD) method, and the thermal conductivities were calculated by the non-equilibrium molecular dynamics method. Compared with the experimental data, the absolute relative errors of the simulation results of the specific heat capacities for the three kinds of chloride molten salts are all within 6.8%. The simulated viscosities differ from the experimental data by 5.3%, 10.9%, and 11.7% for NaCl, KCl and LiCl, respectively. Except for LiCl, the averaged absolute relative errors of thermal conductivity for NaCl and KCl compared to the experimental data are less than 9%. Compared with the previous EMD study results, the absolute relative deviations of the thermal conductivities of the binary mixed KCl-NaCl chloride salts are within 12.5%. The results showed that the simulation results are in good agreement with the experimental values. To better understand the thermophysical properties of chloride molten salt at a molecular level, the partial radial distribution functions were calculated and local structures were analyzed.

Key words

CSP / molten salt / molecular dynamics / specific heat capacity / viscosity / thermal conductivity

Cite this article

Download Citations
Yang Xueming, Liu Jieting, Cui Jixiang, Zhang Mingli, Meng Fanxing. MOLECULAR DYNAMICS SIMULATION RESEARCH OF THERMOPHYSICAL PROPERTIES OF CHLORIDE MOLTEN SALTS AND THEIR MIXTURES[J]. Acta Energiae Solaris Sinica. 2022, 43(11): 433-442 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0525

References

[1] ERKER S, STANGL R, STOEGLEHNER G.Resilience in the light of energy crises—part I: a framework to conceptualise regional energy resilience[J]. Journal of cleaner production, 2017, 164: 420-433.
[2] MYERS P D, GOSWAMI D Y.Thermal energy storage using chloride salts and their eutectics[J]. Applied thermal engineering, 2016, 109(7): 889-900.
[3] 张璐迪, 吴玉庭, 任楠, 等. 纳米粒子的分散对提高LMPS盐比热容的影响[J]. 太阳能学报, 2017, 38(11): 3018-3021.
ZHANG L D, WU Y T, REN N, et al.Effects of nanoparticle dispersion on enhancing specific heat capacity of LMPS salt[J]. Acta energies solaris sinica, 2017, 38(11): 3018-3021.
[4] 邹露璐, 吴玉庭, 马重芳. 低熔点四元混合硝酸盐的开发与实验研究[J]. 太阳能学报, 2020, 41(5): 27-32.
ZOU L L, WU T T, MA C F.Experimental study of low melting point mixed nitrates[J]. Acta energies solaris sinica, 2020, 41(5): 27-32.
[5] 魏高升, 邢丽婧, 杜小泽, 等. 太阳能热发电系统相变储热材料选择及研发现状[J]. 中国电机工程学报,2014, 34(3): 325-335.
WEI G S, XING L J, DU X Z, et al.Research status and selection of phase change thermal energy storage materials for CSP systems[J]. Proceedings of the CSEEg, 2014, 34(3): 325-335.
[6] 李昭, 文卜, 陈豪志, 等. 高温熔融盐基纳米流体的研究现状及进展[J]. 中国电机工程学报, 2021, 41(6): 2168-2187.
LI Z, WEN B, CHEN H Z, et al.State-of-the-art review on high temperature molten salt based nanofluids[J]. Proceedings of the CSEE, 2021, 41(6): 2168-2187.
[7] 李雪松, 随权, 林湘宁, 等. 一种兼顾富余风电充分消纳和全局效益的电网灵活负荷控制策略[J]. 中国电机工程学报, 2020, 40(18): 5885-5897.
LI X S, SUI Q, LIN X N, et al.A flexible load control strategy for power grid considering fully consumption of surplus wind power and global benefits[J]. Proceedings of the CSEE, 2020, 40(18): 5885-5897.
[8] RAUD R, JACOB R, BRUNO F, et al.A critical review of eutectic salt property prediction for latent heat energy storage systems[J]. Renewable and sustainable energy reviews, 2017, 70(11): 936-944.
[9] YANG X, DUAN C, XU J, et al.A numerical study on the thermal conductivity of H2O/CO2/H2 mixtures in supercritical regions of water for coal supercritical water gasification system[J]. International journal of heat and mass transfer, 2019, 135: 413-424.
[10] YANG X M, FENG Y Y, JIN J H, et al.Molecular dynamics simulation and theoretical study on heat capacities of supercritical H2O/CO2 mixtures[J]. Journal of molecular liquids, 2020, 299: 112133.
[11] YANG X M, FENG Y Y, XU J X, et al.Numerical study on transport properties of the working mixtures for coal supercritical water gasification based power generation systems[J]. Applied thermal engineering, 2019, 162: 114-228.
[12] FUMI F G, TOSI M P.Ionic sizes and born repulsive parameters in the NaCl-type Alkali Halides—I: the Huggins-Mayer and Pauling forms[J]. Journal of physics and chemistry of solids, 1964, 25(1): 31-43.
[13] FUMI F G, TOSI M P.Ionic sizes and born repulsive parameters in the NaCl-type alkali halides—II: the generalized Huggins-Mayer form[J]. Journal of physics and chemistry of solids, 1964, 25(1): 45-52.
[14] DIXON M, SANGSTER M J L. A comparison of the structure and some dynamical properties of molten rubidium halides[J]. Journal of physics C: solid state physics, 1976, 9(18): 3381-3390.
[15] DIXON M, SANGSTER M J L. Molten rubidium chloride a molecular dynamics study[J]. Philosophy magazine, 1977, 35(4): 1049-1061.
[16] DIXON M, SANGSTER M J L. Computer simulation study of the structural properties of molten caesium halides[J]. Journal of physics C: solid state physics, 1977, 10(16): 3015-3022.
[17] PAN G C Q, DING J, WANG W L, et al. Molecular simulations of the thermal and transport properties of molten alkali carbonates[J]. Energy procedia, 2017, 105: 4377-4382.
[18] DING J, PAN G C Q, DU L C, et al. Theoretical prediction of the local structures and transport properties of binary alkali chloride salts for concentrating solar power[J]. Nano energy, 2017, 39: 380-389.
[19] XIE W J, DING J, PAN G C Q, et al. Heat and mass transportation properties of binary chloride salt as a high-temperature heat storage and transfer media[J]. Solar energy materials and solar cells, 2020, 209(2): 110415.
[20] WU J, WANG J, NI H O, et al.The influence of NaCl concentration on the(LiCl-KCl)eutectic system and temperature dependence of the ternary system[J]. Journal of molecular liquids, 2018, 253: 96-112.
[21] WU J, NI H, LIANG W, et al.Molecular dynamics simulation on local structure and thermodynamic properties of molten ternary chlorides systems for thermal energy storage[J]. Computational materials science, 2019, 170(2): 109051.
[22] JIANG T, WANG N, CHENG C M, et al.Molecular dynamics simulation on the structure and thermodynamics of molten LiCl-KCl-CeCl3[J]. Acta physico-chimica sinica, 2016, 32(3): 647-655.
[23] RICE S A, KLEMPERER W.Spectra of the alkali halides. II. The infrared spectra of the sodium and potassium halides, RbCl, and CsCl[J]. Journal of chemical physics, 1957, 27(2): 573-579.
[24] BAUGHAN E C.The repulsion energies in ionic compounds[J]. Transactions of the Faraday Society, 1959, 55: 736.
[25] PAULING L.XXIV, the sizes of ions and their influence on the properties of salt-like compounds[J]. Zeitschrift für kristallographie,crystalline materials, 1928, 67(1): 377-404.
[26] MAYER J E.Dispersion and polarizability and the Van Der Waals Potential in the Alkali Halides[J]. The journal of chemical physics, 1933, 1(4): 270-279.
[27] PLIMPTON S.Fast parallel algorithms for short-range molecular dynamics[J]. Journal of computational physics, 1995, 117(1): 1-19.
[28] CALAMBA N, NIETO DE CASTRO C A, ELY J F. Molecular dynamics simulation of the shear viscosity of molten alkali halides[J]. Journal of physical chemistry B, 2004, 108(11): 3658-3662.
[29] ALLEN M P, TLLDESLEY D J.Computer simulation of liquids[M]. Oxford: Oxford University Press, 1987.
[30] FRENKEL D, SMIT B.Understanding molecular simulation: from algorithms to applications[M]. 2nd Ed. Salt Lake City: American Academic Press, Inc. 1996.
[31] GALAMBA N, NIETO DE CASTRO C A, ELY J F. Molecular dynamics simulation of the shear viscosity of molten alkali halides[J]. The journal of physical chemistry B, 2004, 108(11): 3658-3662.
[32] MÜLLER-PLATHE F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity[J]. The journal of chemical physics,1997, 106(14): 6082-6085.
[33] MÜLLER-PLATHE F. Reversing the perturbation in nonequilibrium molecular dynamics: an easy way to calculate the shear viscosity of fluids[J]. Physical reviewe, 1999, 59(5): 4894-4898.
[34] JANZ G J, TOMKINS R P T, ALLEN C B, et al. Molten salts(Volume 4, Part 2): chlorides and mixtures-electrical conductance, density, viscosity, and surface tension data[J]. Journal of physical and chemical reference data, 1975, 4(4): 871-1178.
[35] BROCKNER W, GRJOTHEIM K, ØYE H A, et al.High temperature viscometer for liquids, part II: viscosities of alkali chlorides[J]. Chemischer informationsdienst, 1975, 6(29): 344-347.
[36] JANZ G, DAMPIER F, LAKSHMINARAYANAN G, et al.Molten salts(volume 1), electrical conductance, density, and viscosity data[C]//U.S. National Standard Reference Data Series, U.S. National Bureau of Standards, Washington, DC, USA, 1968.
[37] NAGASAKA Y, NAKAZAWA N, NAGASHIMA A.Experimental determination of the thermal diffusivity of molten alkali halides by the forced rayleigh scattering method. I. Molten LiCl, NaCl, KCl, RbCl, and CsCl[J]. International journal of thermophysics,1992, 13(4): 555-574.
[38] TAKASE K, MATSUMOTO Y, SATO K, et al.Thermal conductivity in molten alkali halides: composition dependence in mixtures of (Na-K)Cl[J]. Molecular simulation, 2012, 38(5): 432-436.
PDF(1921 KB)

Accesses

Citation

Detail

Sections
Recommended

/