AERODYNAMIC CHARACTERISTICS AND VORTEX SHEDDING MODAL ANALYSIS OF VERTICAL AXIS WIND TURBINE

Li Gen, Miao Weipao, Li Chun, Liu Qingsong

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (2) : 41-51.

PDF(4439 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(4439 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (2) : 41-51. DOI: 10.19912/j.0254-0096.tynxb.2021-0531

AERODYNAMIC CHARACTERISTICS AND VORTEX SHEDDING MODAL ANALYSIS OF VERTICAL AXIS WIND TURBINE

  • Li Gen1, Miao Weipao1, Li Chun1,2, Liu Qingsong1
Author information +
History +

Abstract

During the operation of a vertical axis wind turbine, the interaction between the upper and lower surface boundary layer and the shear layer causes the formation of periodic vortex structure in the downstream wake of the wind turbine, which has an important effect on the aerodynamic characteristics of the wind turbine. Based on this, the CFD method is used to study the wake vortex structure of vertical axis wind turbine under different working conditions. Fast Fourier transform and phase space trajectory are used to analyze the vortex shedding phenomenon and wake vortex structure of wind turbine blade under different tip speed ratios. The fractal dimension is used to study the torque and wake flow velocity variation. The results show that the wake vortex structure of the wind turbine presents different characteristics with the change of the tip speed ratio. When the tip speed ratio is 3.6, the two sides of the wind turbine wake show regular reverse shedding vortex mode. The wake of the vertical axis wind turbine with low tip ratio has obvious chaotic characteristics, and the chaotic characteristics gradually weaken with the increase of the tip ratio. With the increase of the tip speed ratio, the fractal dimension of wind turbine torque and downstream speed decreases continuously, and when the tip speed ratio is 3.6, the fractal dimension of downstream speed of wind turbine is only 1.07.

Key words

vertical axis wind turbine / tip speed ratio / Fourier transform / fractal dimension

Cite this article

Download Citations
Li Gen, Miao Weipao, Li Chun, Liu Qingsong. AERODYNAMIC CHARACTERISTICS AND VORTEX SHEDDING MODAL ANALYSIS OF VERTICAL AXIS WIND TURBINE[J]. Acta Energiae Solaris Sinica. 2023, 44(2): 41-51 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0531

References

[1] JOERI R, MICHEL D E, NIKLAS H, et al.Paris agreement climate proposals need a boost to keep warming well below 2 ℃[J]. Nature, 2016, 534(7609): 631-639.
[2] AMOCO B P. BP statistical review of world energy2019: an unsustainable path[EB/OL]. (2019-06-11)[2021-03-10] https://www.bp.com/en/global/corporate/news-and-insights/press-releases/bp-statistical-review-of-world-energy-2019.html.
[3] SMITH S E, TRAVIS K N, DJERIDI H, et al.Dynamic effects of inertial particles on the wake recovery of a model wind turbine[J]. Renewable energy, 2021, 164: 346-361.
[4] DABIRI J O.Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays[J]. Journal of renewable and sustainable energy, 2011, 3(4): 73.
[5] YUAN Z, JIANG J, ZANG J, et al.A fast two-dimensional numerical method for the wake simulation of a vertical axis wind turbine[J]. Energies, 2021, 14(1): 1-21.
[6] PARASCHIVOIU I.Wind turbine design: with emphasis on Darrieus concept[M]. Montréal: Presses Inter Polytechnique, 2002.
[7] STEVENS R J, MENEVEAU C.Flow structure and turbulence in wind farms[J]. Annual review of fluid mechanics, 2017, 49: 311-339.
[8] HEZAVEH S H, BOU Z E, LOHRY M W, et al.Simulation and wake analysis of a single vertical axis wind turbine[J]. Wind energy, 2016, 20(4): 713-730.
[9] TESCIONE G, RAGNI D, HE C, et al.Near wake flow analysis of a vertical axis wind turbine by stereoscopic particle image velocimetry[J]. Renewable energy, 2014, 70: 47-61.
[10] PARKER C M, ARAYA D B, LEFTWITH M C.Effect of chord-to-diameter ratio on vertical-axis wind turbine wake development[J]. Experiments in fluids, 2017, 58(12): 168.
[11] FRAUNIE P, BEGUIER C, PARASCHIVOIU I, et al.Water channel experiments of dynamic stall on Darrieus wind turbine blades[J]. Journal of propulsion and power, 1986, 2(5): 445-449.
[12] ROLIN V, PORTE A F.Wind-tunnel study of the wake behind a vertical axis wind turbine in a boundary layer flow using stereoscopic particle image velocimetry[J]. Journal of physics conference, 2015, 625: 012012.
[13] LI Q A, MAEDA T, KAMADA Y, et al.Study on power performance for straight-bladed vertical axis wind turbine by field and wind tunnel test[J]. Renewable energy, 2016, 90: 291-300.
[14] RYAN K J, COLETTI F, ELKINS C J, et al.Three-dimensional flow field around and downstream of a subscale model rotating vertical axis wind turbine[J]. Experiments in fluids, 2016, 57(3): 38.
[15] ABKAR M, DABIRI J O.Self-similarity and flow characteristics of vertical-axis wind turbine wakes: an LES study[J]. Journal of turbulence, 2017, 18(4): 373-389.
[16] KADUN H, FRIEDMAN S, CAMP E H, et al.Development and scaling of a vertical axis wind turbine wake[J]. Journal of wind engineering and industrial aerodynamics, 2018, 174: 303-311.
[17] FERREIRA C, HOFEMANN C, DIXON K, et al.3D wake dynamics of the VAWT: experimental and numerical investigations[C]// 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, USA, 2010.
[18] FERREIRA C S.The near wake of the VAWT 2D and 3D views of the VAWT aerodynamics[D]. Delft: Technische Universiteit Delft, 2009.
[19] KURTULUS D F.On the wake pattern of symmetric airfoils for different incidence angles at Re=1000[J]. International journal of micro air vehicles, 2016, 8(2): 109-139.
[20] DURANTE D, ROSSI E, COLAGROSSI A.Bifurcations and chaos transition of the flow over an airfoil at low Reynolds number varying the angle of attack[J]. Communications in nonlinear science and numerical simulation, 2020, 89: 105285.
[21] LIU Y, LI K L, ZHANG J Z, et al.Numerical bifurcation analysis of static stall of airfoil and dynamic stall under unsteady perturbation[J]. Communications in nonlinear science and numerical simulation, 2012, 17(8): 3427-3434.
[22] HOLDSWORTH B.Options for micro-wind generation: part two[J]. Renewable energy focus, 2009, 10(3): 42-45.
[23] BRULLE R V.Feasibility investigation of the Giromill for generation of electrical power[R]. NASA STi/recon Technical Report, 1975.
[24] SUNYOTO A, WENEHENUBUN F, SUTANTO H.The effect of number of blades on the performance of H-Darrieus type wind turbine[C]//2013 International Conference on QiR(Quality in Research), IEEE, Yogyakarta, Indonesia, 2013.
[25] CASTELLI M R, ARDIZZON G, BATTISTI L, et al.Modeling strategy and numerical validation for a Darrieus vertical axis micro-wind turbine[C]//Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition, Vancouver, Canada, 2010: 409-418.
[26] NAYFEH A H, BALACHANDRAN B.Applied nonlinear dynamics: analytical, computational, and experimental methods[M]. New York: John Wiley & Sons, 2007.
[27] 邱静, 王国志, 李玉辉. 基于STAR-CCM+的简单流体模CFD研究[J]. 液压气动与密封, 2010, 30(10): 8-10.
QIU J, WANG G Z, LI Y H.A simple fluid model for CFD research based on STAR-CCM+[J]. Hydraulics pneumatics & seals, 2010, 30(10): 8-10.
[28] 张来平, 邓小刚, 张信涵. 动网格生成技术及非定常计算方法进展综述[J]. 力学进展, 2010, 40(4): 424-447.
ZHANG L P, DENG X G, ZHAN X H.Reviews of moving grid generation techniques and numerical methods for unsteady flow[J]. Advances in mechanics, 2010, 40(4): 424-447.
[29] LAROSE G L, D’AUTEUIL A. Effect of local air compressibility on the aerodynamics of rectangular prisms at Mach number below 0.3[C]//BBAA VI International Colloquium on: Bluff Bodies Aerodynamics and Applications, Milano, Italy, 2008.
[30] BALDUZZI F, BIANCHINI A, MALECI R, et al.Critical issues in the CFD simulation of Darrieus wind turbines[J]. Renewable energy, 2016, 85: 419-435.
[31] GUO Y, LI X, SUN L, et al.Aerodynamic analysis of a step adjustment method for blade pitch of a VAWT[J]. Journal of wind engineering & industrial aerodynamics, 2019, 18: 90-101.
PDF(4439 KB)

Accesses

Citation

Detail

Sections
Recommended

/