BATTERY LOSS ASSESSMENT AND ENERGY STORAGE CAPACITY CONFIGURATION STRATEGY CONSIDERING REAL-TIME SOC AND DYNAMIC CYCLING EFFICIENCY

Huang Yanbo, Feng Zhongnan, Sui Quan, Wu Chuantao, Xu Ang, Lin Xiangning

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (11) : 413-423.

PDF(2302 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2302 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (11) : 413-423. DOI: 10.19912/j.0254-0096.tynxb.2021-0546

BATTERY LOSS ASSESSMENT AND ENERGY STORAGE CAPACITY CONFIGURATION STRATEGY CONSIDERING REAL-TIME SOC AND DYNAMIC CYCLING EFFICIENCY

  • Huang Yanbo, Feng Zhongnan, Sui Quan, Wu Chuantao, Xu Ang, Lin Xiangning
Author information +
History +

Abstract

The paper proposes a high-precision battery life loss assessment model, which can fully exploit the effective information in the data provided by manufacturers to establish the mapping relationship between dynamic cycle efficiency, depth of discharge(DOD) and real-time state of charge (SOC), and other factors. Meanwhile, an optimal algorithm based on the rolling McCormick relaxation method is proposed for the nonlinear terms introduced by the adoption of a more refined energy storage model. The algorithm can transform the original nonlinear programming problem containing mixed integers into a mixed integer linear programming problem, so as to realize the numerical solution of the optimization problem. Finally, the rationality and superiority of the refined battery life model and the rolling McCormick optimal algorithm proposed in this paper are demonstrated by simulation results.

Key words

nonlinear programming / battery / degradation / energy storage / rolling McCormick relaxation

Cite this article

Download Citations
Huang Yanbo, Feng Zhongnan, Sui Quan, Wu Chuantao, Xu Ang, Lin Xiangning. BATTERY LOSS ASSESSMENT AND ENERGY STORAGE CAPACITY CONFIGURATION STRATEGY CONSIDERING REAL-TIME SOC AND DYNAMIC CYCLING EFFICIENCY[J]. Acta Energiae Solaris Sinica. 2022, 43(11): 413-423 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0546

References

[1] 李更丰, 别朝红, 王睿豪, 等. 综合能源系统可靠性评估的研究现状及展望[J]. 高电压技术, 2017, 43(1): 114-121.
LI G F, BIE Z H, WANG R H, et al.Research status and prospects on reliability evaluation of integrated energy system[J]. High voltage engineering, 2017, 43(1): 114-121.
[2] 文云峰, 杨伟峰, 汪荣华, 等. 构建100%可再生能源电力系统述评与展望[J]. 中国电机工程学报, 2020, 40(6): 1843-1855.
WEN Y F, YANG W F, WANG R H, et al.Review and prospect of toward 100% renewable energy power systems[J]. Proceedings of the CSEE, 2020, 40(6): 1843-1855.
[3] 卢强. 充分利用可再生能源中国不会有能源危机[J]. 中国电力, 2011, 44(9): 1-3.
LU Q.No energy crisis in China if renewable energy to be used sufficiently[J] China power, 2011, 44(9): 1-3.
[4] 国家能源局、国家工商行政管理总局关于印发风力发电厂、光伏电站并网调度协议示范文本的通知,国能监管[2014]33号[S/OL]. http: //zfxxgk.nea. gov. cn/ auto92/201407/t20140717_1822.htm.
Notice of the National Energy Administration and the State Administration for Industry and Commerce on Printing and Distributing the Model Text of Grid-connected Dispatching Agreement for Wind Power Plants and Photovoltaic Power Plants, Guoneng Supervision[2014] No.33[S/OL]. http://zfxgk.nea.gov.cn/auto92/201407/t20140717 _1822.htm.
[5] 陈达鹏, 荆朝霞. 美国调频辅助服务市场的调频补偿机制分析[J]. 电力系统自动化, 2017, 41(18): 1-9.
CHEN D P, JING Z X.Analysis of frequency modulation compensation mechanism in frequency modulation ancillary market of the United States[J]. Automation of electric power systems, 2017, 41(18): 1-9.
[6] 黄际元, 李欣然, 常敏, 等. 考虑储能电池参与一次调频技术经济模型的容量配置方法[J]. 电工技术学报, 2017, 32(21): 43-52.
HUANG J Y, LI X R, CHANG M, et al.Capacity allocation of BESS in primary frequency regulation considering its technical-economic model[J]. Transactions of China Electrotechnical Society, 2017, 32(21): 43-52.
[7] 刘文霞, 杨梦瑶, 王静, 等. 基于运行策略智能生成方法的增量配电系统储能优化配置[J]. 中国电机工程学报, 2021, 41(10): 3317-3329, 2.
LIU W X, YANG M Y, WANG J, et al.Energy storage planning for incremental power distribution systems based on the intellectual generating method of operational strategies[J]. Proceedings of the CSEE, 2021, 41(10): 3317-3329, 2.
[8] 王登科, 刘敏, 刘伟峰. 基于场景法和寿命损耗的储能优化配置[J]. 电测与仪表, 2020, 57(17): 39-44.
WANG D K, LIU M, LIU W F, et al.Optimal allocation of energy storage based on scenario method and service life loss[J]. Electrical measurement & instrumentation, 2020, 57(17): 39-44.
[9] 王荔妍, 陈启鑫, 何冠楠, 等. 考虑电池储能寿命损耗模型的发电计划优化[J]. 电力系统自动化, 2018, 43(8): 93-100.
WANG L Y, CHEN Q X, HE G N, et al.Optimization of generation scheduling considering battery energy storage life model[J]. Automation of electric power systems, 2018, 43(8): 93-100.
[10] SEVERSON K A, ATTIA P M, JIN N, et al.Data-driven prediction of battery cycle life before capacity degradation[J]. Nature energy, 2019, 4(5): 383-391.
[11] XU B, ZHAO J, ZHENG T, et al.Factoring the cycle aging cost of batteries participating in electricity markets[J]. IEEE transactions on power systems, 2017, 33(2): 2248-2259.
[12] MALLON K R, ASSADIAN F, FU B.Analysis of on-board photovoltaics for a battery electric bus and their impact on battery lifespan[J]. Energies, 2017, 10(7): 943.
[13] SHI Y Y, XU B L, WANG D, et al.Using battery storage for peak shaving and frequency regulation: joint optimization for super linear gains[J]. IEEE transactions on power systems, 2017, 33(3): 2882-2894.
[14] AL-SAADI M K, LUK P C K, FEI W Z. Impact of unit commitment on the optimal operation of hybrid microgrids[C]//2016 UKACC 11th International Conference on Control(CONTROL), IEEE, Belfast, UK, 2016: 1-6.
[15] 葛玉友, 尚策. 寿命约束的储能规划[J]. 中国电机工程学报, 2020, 40(19): 6150-6161.
GE Y Y, SHANG C.Energy storage planning constrained by its life[J]. Proceedings of the CSEE, 2020, 40(19): 6150-6161.
[16] 严干贵, 刘莹, 段双明, 等. 电池储能单元群参与电力系统二次调频功率分配策略[J]. 电力系统自动化, 2019, 44(14): 26-33.
YAN G G, LIU Y, DUAN S M, et al.Power distribution strategy for battery energy storage unit group participating in secondary frequency regulation of power system[J]. Automation of electric power systems, 2019, 44(14): 26-33.
[17] MATSUSHIMA T.Deterioration estimation of lithium-ion cells in direct current power supply systems and characteristics of 400-Ah lithium-ion cells[J]. Journal of power sources, 2009, 189(1): 847-854.
[18] DUBARRY M, LIAW B Y.Identify capacity fading mechanism in a commercial LiFePO4 cell[J]. Journal of power sources, 2009, 194(1): 541-549.
[19] 国家能源局华中监管局. 华中区域发电厂辅助服务管理实施细则[S].
Central China Supervision Bureau of National Energy Administration. Detailed rules for the implementation of auxiliary services management of power plants in central China[S].
[20] 何勇琪, 张建成, 鲍雪娜. 并网型风光储混合发电系统中储能系统容量优化研究[J]. 华北电力大学学报(自然科学版), 2012, 39(4): 1-5.
HE Y Q, ZHANG J C, BAO X N.Optimization of storage capacity in grid-connected wind/PV/storage hybrid system[J]. Journal of North China Electric Power University(natural science edition), 2012, 39(4): 1-5.
[21] 韩晓娟, 程成, 籍天明, 等. 计及电池使用寿命的混合储能系统容量优化模型[J]. 中国电机工程学报, 2013, 33(34): 91-97.
HAN X J, CHENG C, JI T M,et al.Capacity optimal modeling of hybrid energy storage systems considering battery life[J]. Proceedings of the CSEE, 2013, 33(34): 91-97.
[22] FU R, REMO T W, MARGOLIS R M.2018 US utility-scale photovoltaics-plus-energy storage system costs benchmark[R]. National Renewable Energy Lab(NREL), Golden, CO(United States), 2018.
[23] XIONG R, DUAN Y Z, CAO J Y, et al.Battery and ultracapacitor in-the-loop approach to validate a real-time power management method for an all-climate electric vehicle[J]. Applied energy, 2018, 217: 153-165.
[24] 李瑞民, 张新敬, 徐玉杰, 等. 风光互补系统中混合储能容量优化配置研究[J]. 储能科学与技术, 2019, 8(3): 512.
LI R M, ZHANG X J, XU Y J, et al.Research on optimal configuration of hybrid energy storage capacity for wind-solar generation system[J]. Energy storage science and technology, 2019, 8(3): 512.
[25] 贺帅佳, 高红均, 刘俊勇, 等. 计及需求响应柔性调节的分布鲁棒 DG 优化配置[J]. 中国电机工程学报, 2019, 39(8): 2253-2264, 8.
HE S J, GAO H J, LIU J Y, et al.Distributionally robust optimal DG allocation model considering flexible adjustment of demand[J]. Proceedings of the CSEE, 2019,39(8): 2253-2264, 8. [26] 汤杰, 李欣然, 黄际元, 等. 以净效益最大为目标的储能电池参与二次调频的容量配置方法[J]. 电工技术学报, 2019, 34(5): 963-972. TANG J, LI X R, HUANG J Y, et al. Capacity allocation of BESS in secondary frequency regulation with the goal of maximum net benefit[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 963-972.
[27] 薛美东, 赵波, 张雪松, 等. 并网型微网的优化配置与评估[J]. 电力系统自动化, 2015, 39(3): 6-13.
XUE M D, ZHAO B, ZHANG X S,et al.Integrated plan and evaluation of grid-connected microgrid[J]. Automation of electric power systems, 2015, 39(3): 6-13.
PDF(2302 KB)

Accesses

Citation

Detail

Sections
Recommended

/