RESEARCH ON MAIN GIRDER WEB CONFIGURATION OFBEND-TWIST COUPLING BLADE OF LARGE WIND TURBINE WITH COMPOSITE LAYING

Wang Haisheng, Miao Weipao, Zhang Li, Li Chun, Li Zhihao

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (3) : 29-38.

PDF(2690 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2690 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (3) : 29-38. DOI: 10.19912/j.0254-0096.tynxb.2021-0553

RESEARCH ON MAIN GIRDER WEB CONFIGURATION OFBEND-TWIST COUPLING BLADE OF LARGE WIND TURBINE WITH COMPOSITE LAYING

  • Wang Haisheng1, Miao Weipao1, Zhang Li1, Li Chun1,2, Li Zhihao1
Author information +
History +

Abstract

In order to explore the effect of web deflection on modal, strength and buckling characteristics of the bend twist coupling blade, Taking the blade of NREL 5 MW wind turbine as the research object, the blade CAD model was established based on the secondary development of NX. The blade surface pressure distribution was obtained by CFD method for fluid-structure coupling analysis. The results show that natural frequencies of the bend-twist coupled blade are lower than the conventional. The blade shear stress is less than the conventional blade when the main beam of pressure surface deflects to the leading edge. Conversely the trend of the equivalent stress and strain on the blade surface is the same with the deflection angle. The effect of decreasing range and unloading reduction of load is related to web deflection; The blade tip displacement increases with the increase of web deflection. The deflection of the main beam on the pressure surface to the leading edge can enhance the critical buckling load of the blade, the critical buckling load of each blade is smaller than that of the conventional structure blade when the reverse deflection is applied.

Key words

wind turbine blades / structural design / composite materials / static analysis / bend-twist coupling

Cite this article

Download Citations
Wang Haisheng, Miao Weipao, Zhang Li, Li Chun, Li Zhihao. RESEARCH ON MAIN GIRDER WEB CONFIGURATION OFBEND-TWIST COUPLING BLADE OF LARGE WIND TURBINE WITH COMPOSITE LAYING[J]. Acta Energiae Solaris Sinica. 2023, 44(3): 29-38 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0553

References

[1] NAGASAKA K, AMINI A, MOMENI V.WinDam: a novel airborne wind turbine[J]. Journal of clean energy technologies, 2017, 5(3): 243-247.
[2] 全球能源互联网合作组织. 《中国2030年能源电力发展规划研究及2060年展望》[R/OL].[2021-04-06].https://shupeidian.bjx.com.cn/html/20210319/1142781-2.shtml.
Global Energy Internet Cooperation Organization. Research on China’s energy and electricity development plan2030 and prospects for 2060[R/OL]. [2021-04-06]. https://shupeidian.bjx.com.cn/html/20210319/1142781-2.shtml.
[3] HAYAT K, SUNG K H.A parametric study of skin laminates used in the composite layup of large-scale wind turbine blades[J]. Advanced composite materials, 2018, 27(2): 195-208.
[4] VEERS P, DYKES K, LANTZ E, et al.Grand challenges in the science of wind energy[J]. Science, 2019, 366(6464): 1-9.
[5] 李春, 叶舟, 高伟, 等. 现代大型风力机设计原理[M]. 上海: 上海科学技术出版社, 2013.
LI C, YE Z, GAO W, et al.Modern large-scale wind turbine design principle[M]. Shanghai: Shanghai Science and Technology Press, 2013.
[6] VAN KUIK G A M, PEINKE J, NIJSSEN R, et al. Long-term research challenges in wind energy-a research agenda by the european academy of wind energy[J]. Wind energy science, 2016,1(1): 1-39.
[7] KOOIJMAN H J T. Bending-torsion coupling of a wind turbine rotor blade[R]. ECN-I-96-060. SCA: 170602; PA: ECN-97:0E0681; EDB-97:048664; SN: 97001759857 Energieonderzoek Centrum Nederland, 1996.
[8] ZUTECK M.Adaptive blade concept assessment:curved planform induced twist investigation[R]. Albuquerque, NewMexico, USA: Sandia national laboratories, 2002.
[9] BARR S M, JAWORSKI J W.Optimization of tow-steered composite wind turbine blades for static aeroelastic performance[J]. Renewable energy, 2019, 139: 859-872.
[10] CAPUZZI M, PIRRERA A, WEAVER P M.Structural design of a novel aero elastically tailored wind turbine blade[J]. Thin-walled structures, 2015, 95: 7-15.
[11] 刘宇航, 王渊博, 李春, 等. 应用于气动弹性剪裁的大型风力机叶片弯扭耦合性能研究[J]. 动力工程学报, 2018, 38(12): 1016-1021.
LIU Y H, WANG Y B, LI C, et al.Research on bend-twist coupling properties of twisted composite blades for large wind turbines based on aeroelastic tailoring[J]. Journal of Chinese society of power engineering, 2018, 38(12): 1016-1021.
[12] STÄBLEIN A R, HANSEN M H, VERELST D R. Modal properties and stability of bend-twist coupled wind turbine blades[J]. Wind energy science, 2017, 2(1): 343-360.
[13] HONG C H, CHOPRA I.Aeroelastic stability analysis of a composite rotor blade[J]. Journal of the American helicopter society, 1985, 30(2): 57-67.
[14] MIAO W P, LI C, WANG Y B, et al.Study of adaptive blades in extreme environment using fluid-structure interaction method[J]. Journal of fluids and structure, 2019, 91: 102734.
[15] TINGRUI L, REN Y S, YANG X H.Nonlinear aeroelastic stability analysis of wind turbine blade with bending-bending-twist coupling[J]. Journal of fluids and structures, 2013, 42: 488-502.
[16] HAYAT K, HA S K.Flutter performance of large-scale wind turbine blade with shallow-angled skin[J]. Compos struct, 2015, 132: 575-583.
[17] CROCE A, SARTORI L, RIVA R, et al.Effect of blade flexibility and structural tailoring on loads[R]. Netherlands, 2017.
[18] 王琦峰, 陈伯君, 安亦然. 大型风力机三维空气动力学数值模拟[J]. 空气动力学学报, 2011, 29(6): 810-814.
WANG Q F, CHEN B J, AN Y R.3D numerical simulation for aerodynamic performance of large scale wind turbine[J]. Acta aerodynamica sinica, 2011, 29(6): 810-814.
[19] 张立, 缪维跑, 李春, 等. 考虑自重影响的大型风力机复合材料叶片结构力学特性分析[J]. 中国电机工程学报, 2020, 40(19): 6272-6284.
ZHANG L, MIAO W P, LI C, et al.Analysis of structural characteristics of large wind turbine composite blade considering weight of blade[J]. Proceedings of the CSEE, 2020, 40(19): 6272-6284.
[20] HASELBACH P U, BITSCHE R D, BRANNER K.The effect of delaminations on local buckling in wind turbine blades[J]. Renewable energy, 2016, 85: 295-305.
[21] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al.Definition of a 5 MW reference wind turbine for offshore system development[R]. Office of scientific and technical information technical reports,2009.
[22] 黄勇. UG/Open应用开发典型案例精解[M]. 北京: 国防工业出版社, 2010.
HUANG Y.Explanation of typical case of UG/Open application development[M]. Beijing: National Defense Industry Press, 2010.
[23] 缪维跑. 极端台风环境下基于流固耦合的风力机结构响应及抗风性研究[D]. 上海: 上海理工大学, 2019.
MIAO W P.Investigation of fluid structure interaction for large scale wind turbine in extremely typhoon environments[D]. Shanghai: University of Shanghai for Science and Technology, 2019.
[24] TODD GRIFFITH D, THOMAS D.Large offshore rotor development: design and analysis of the sandia 100-meter wind turbine blade[R]. New Mexico: Sandia National Laboratories, 2011.
[25] 岳一轩. 叶片翼刀对水平轴风力机气动性能的影响[D]. 兰州: 兰州理工大学, 2020.
YUE Y X.The Effect of wing fence on aerodynamic performance of horizontal axis wind turbine[D]. Lanzhou: Lanzhou University of Technology, 2020.
[26] 周乾. 故宫古建筑结构与保护[M]. 北京: 知识产权出版社, 2019.
ZHOU Q.Structure analysis and protection of ancient buildings in the forbidden city[M]. Beijing: Intellectual Property Publishing House, 2019.
[27] 唐新姿, 彭锐涛. 风能技术[M]. 湘潭: 湘潭大学出版社, 2017.
TANG X Z, PENG R T.Wind power technology[M]. Xiangtan: Xiangtan University Press, 2017.
[28] 康国政, 杨翊仁. 断裂与疲劳及结构安全性评定[M]. 成都: 西南交通大学出版社, 2009.
KANG G Z, YANG Y R.Fracture and fatigue and structural safety assessment[M]. Chengdu: Southwest Jiaotong University Press, 2009.
[29] 刘旺玉, 龚佳兴, 刘希凤, 等. 基于弯扭耦合的自适应风力机叶片设计[J]. 太阳能学报, 2011, 32(7): 1014-1019.
LIU W Y, GONG J X, LIU X F, et al.The adaptive blade design of wind turbine based on beam flap-twist coupling theory[J]. Acta energiae solaris sinica, 2011, 32(7): 1014-1019.
[30] COX K, ECHTERMEYER A.Effects of composite fiber orientation on wind turbine blade buckling resistance[J]. Wind energy, 2014, 17(12): 1925-1943.
[31] 庄茁. Abaqus非线性有限元分析与实例[M]. 北京: 科学出版社, 2005.
ZHUANG Z.Abaqus nonlinear finite element analysis and examples[M]. Beijing: Science Press, 2005.
[32] 宋祥玲. 工程力学[M]. 北京: 北京理工大学出版社, 2017.
SONG X L.Engineering mechanics[M]. Beijing: Beijing University of Technology Press, 2017.
[33] 国家机械工业局. 风力发电机组风轮叶片[S]. 北京: 国家机械工业局, 2000.
State Ministry of Machinery Industry. Wind turbine blade[S]. Beijing: State ministry of Machinery Industry, 2000.
[34] RESOR B R.Definition of a 5 MW/61.5 m wind turbine blade reference model[R]. New Mexico: Sandia National Laboratories, 2013.
[35] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al.Definition of a 5-MW reference wind turbine for offshore system development[R]. Golden: National Renewable Energy Laboratory, 2009.
PDF(2690 KB)

Accesses

Citation

Detail

Sections
Recommended

/