COMPARISON OF DYNAMIC RESPONSE OF TWO FLOATING WIND FARM PLATFORMS FOR OFFSHORE WIND TURBINES

He Hongsheng, Li Chun, Wang Bo, Li Shujun, Zhang Li, Ding Qinwei

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (4) : 1-8.

PDF(2493 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2493 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (4) : 1-8. DOI: 10.19912/j.0254-0096.tynxb.2021-0564

COMPARISON OF DYNAMIC RESPONSE OF TWO FLOATING WIND FARM PLATFORMS FOR OFFSHORE WIND TURBINES

  • He Hongsheng1, Li Chun1,2, Wang Bo1, Li Shujun1, Zhang Li1, Ding Qinwei3
Author information +
History +

Abstract

In order to study the dynamic response of different floating wind farm platforms with offshore wind turbine under the combined action of wind, wave and current, 2×2 array floating wind farms based on OC3-Hywind Spar and ITI Energy Barge platform are established respectively. Combined with radiation and diffraction theory and finite element method, the hydrodynamic and aerodynamic loads are calculated by ocean engineering software AQWA and wind turbine simulation software FAST respectively, and the time-frequency response characteristics of the two floating wind farm platforms are analyzed. The results show that the frequency domain responses of both Spar and Barge platforms are concentrated in the low-frequency region below 2.00 rad/s. Among the two types of wind farms, the platforms of Spar wind farm have better stability in heave, pitch, roll, yaw four degrees of freedom and nacelle vibration acceleration. The magnitude of platform sway, surge and nacelle vibration acceleration are related to their position in the wind farm.

Key words

offshore wind turbines / wind farm / dynamic response / Spar platform / Barge platform

Cite this article

Download Citations
He Hongsheng, Li Chun, Wang Bo, Li Shujun, Zhang Li, Ding Qinwei. COMPARISON OF DYNAMIC RESPONSE OF TWO FLOATING WIND FARM PLATFORMS FOR OFFSHORE WIND TURBINES[J]. Acta Energiae Solaris Sinica. 2023, 44(4): 1-8 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0564

References

[1] ZHANG S J, WEI J, CHEN X, et al.China in global wind power development: role, status and impact[J]. Renewable and sustainable energy reviews, 2020, 127: 109881.
[2] LI Y, HUANG X, TEE K F, et al.Comparative study of onshore and offshore wind characteristics and wind energy potentials: a case study for southeast coastal region of China[J]. Sustainable energy technologies and assessments, 2020, 39: 100711.
[3] 闵兵, 王梦川, 傅小荣, 等. 海上风电是风电产业未来的发展方向——全球及中国海上风电发展现状与趋势[J]. 国际石油经济, 2016, 24(4): 29-36.
MIN B, WANG M C, FU X R, et al.Offshore wind power as the development trend of wind industry—developments of global offshore wind power[J]. International petroleum economics, 2016, 24(4): 29-36.
[4] 王海璎. 海上风电Spar浮式基础运动特性研究[D]. 广州: 华南理工大学, 2014.
WANG H Y.Hydrodynamic performance analysis of cell Spar type off-shore wind turbine[D]. Guangzhou: South China University of Technology, 2014.
[5] PANTALEO A, PELLERANO A, RUGGIERO F, et al.Feasibility study of off-shore wind farms: an application to Puglia region[J]. Solar energy, 2005, 79(3): 321-331.
[6] JIANG Z Y.Installation of offshore wind turbines: a technical review[J]. Renewable and sustainable energy reviews, 2021, 139(44): 110576.
[7] JEON S H, CHO Y U, SEO M W, et al.Dynamic response of floating substructure of spar-type offshore wind turbine with catenary mooring cables[J]. Ocean engineering, 2013, 72(11): 354-364.
[8] GAO X X, YANG H X, LU L.Study on offshore wind power potential and wind farm optimization in Hong Kong[J]. Applied energy, 2014, 130(5): 519-531.
[9] HAO H B, GUO Z Q, MA Q W, et al.Air cushion barge platform for offshore wind turbine and its stability at a large range of angle[J]. Ocean engineering, 2020, 217: 107886.
[10] PALRAJ M, RAJAMANICKAM P.Motion control of a barge for offshore wind turbine (OWT) using gyrostabilizer[J]. Ocean engineering, 2020, 209: 107500.
[11] YUE M N, LIU Q S, LI C, et al.Effects of heave plate on dynamic response of floating wind turbine Spar platform under the coupling effect of wind and wave[J]. Ocean engineering, 2010, 201: 107103.
[12] 丁勤卫, 郝文星, 李春, 等. 基于正交设计的浮式风机Spar平台动态响应优化[J]. 中南大学学报(自然科学版), 2017, 48(8): 2231-2237.
DING Q W, HAO W X, LI C, et al.Dynamic response of platform of floating wind turbine based on optimization method of orthogonal design[J]. Journal of Central South University (science and technology), 2017, 48(8): 2231-2237.
[13] 丁勤卫, 李春, 周国龙, 等. 基于AQWA的漂浮式风力机驳船式平台的动态响应[J]. 水资源与水工程学报,2015, 26(2): 150-155, 160.
DING Q W, LI C, ZHOU G L, et al.Dynamic response of barge platform of floating wind turbine based on AQWA[J]. Journal of water resources and water engineering, 2015, 26(2): 150-155, 160.
[14] JONKMAN J, MATHA D.Quantitative comparison of the responses of three floating platforms[J]. Australian historical studies, 2010, 32(3): 351-355.
[15] 王颖. Spar平台涡激运动关键特性研究[D]. 上海: 上海交通大学, 2010.
WANG Y.Research on the key characteristics of Spar vortex-induced motions[D]. Shanghai: Shanghai Jiao Tong University, 2010.
[16] 丁勤卫. 风波耦合作用下漂浮式风力机平台动态响应及稳定性控制研究[D]. 上海: 上海理工大学, 2019.
DING Q W.Research on dynamic response of floating wind turbine platform under the coupling effect of wind, wave and its stability improvement[D]. Shanghai: University of Shanghai for Science and Technology, 2019.
[17] 李春, 叶舟, 高伟, 等. 现代大型风力机设计原理[M].上海: 上海科学技术出版社, 2013.
LI C, YE Z, GAO W, et al.Modern large-scale wind turbine design principle[M]. Shanghai: Shanghai Scientific & Technical Publishers, 2013.
[18] MORIARTY P J, HANSEN A C.Aerodyn theory manual[R]. Colorado: National Renewable Energy Laboratory, 2010.
[19] 刘贵杰, 王清扬, 田晓洁, 等. 海洋结构物小尺度桩柱的水动力系数研究与进展[J]. 中国海洋大学学报(自然科学版), 2020, 50(1): 136-144.
LIU G J, WANG Q Y, TIAN X J, et al.Recent research and progress on hydrodynamic coefficients of marine structures with small scale pile[J]. Periodical of Ocean University of China(science and technology), 2020, 50(1): 136-144.
[20] 张金平, 段艳丽, 刘学虎. 海洋平台波浪载荷计算方法的分析和建议[J]. 石油矿场机械, 2006, 35(3): 10-14.
ZHANG J P, DUAN Y L, LIU X H.The analysis and proposal of computation methods of wave loads acting on offshore platform[J]. Oil field equipment, 2006, 35(3): 10-14.
[21] 王树青, 梁丙臣. 海洋工程波浪力学[M]. 青岛: 中国海洋大学出版社, 2013.
WANG S Q, LIANG B C.Wave mechanics for ocean engineering[M]. Qingdao: China Ocean University Press, 2013.
[22] 曹明强, 王磊, 王亮. 深水半潜平台海流载荷试验分析[J]. 实验室研究与探索, 2009, 28(8): 26-29.
CAO M Q, WANG L, WANG L.Analysis of current load for deepwater semisubmersible based on model test[J]. Research and exploration in laboratory, 2009, 28(8): 26-29.
[23] 蒙占彬, 王西录, 樊敦秋, 等. 深水自升式平台波流载荷分析研究[J]. 装备制造技术, 2018(2): 111-114.
MENG Z B, WANG X L, FAN D Q, et al.Research on wave-current analysis of deepwater jack-up unit[J]. Equipment manufacturing technology, 2018(2): 111-114.
[24] 徐建源, 祝贺. 风波联合作用海上风力机动态特性分析[J]. 中国电机工程学报, 2010, 30(5): 120-124.
XU J Y, ZHU H.Dynamic characteristic analysis of offshore wind turbine under combined wind and wave action[J]. Proceedings of the CSEE, 2010, 30(5): 120-124.
[25] 李文魁, 张博, 田蔚风, 等. 一种波浪中的船舶动力定位运动建模方法研究[J]. 仪器仪表学报, 2007, 28(6):1051-1054.
LI W K, ZHANG B, TIAN W F, et al.Method of ship motion modeling with dynamic positioning in waves[J]. Chinese journal of scientific instrument, 2007, 28(6): 1051-1054.
PDF(2493 KB)

Accesses

Citation

Detail

Sections
Recommended

/