ULTRA-SHORT-TERM WIND POWER PREDICTION BASED ON VARIABLE FEATURE WEIGHT

Wang Xiaodong, Li Shanshan, Liu Yingming, Jing Tonghui, Gao Xing

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (2) : 52-58.

PDF(1741 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1741 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (2) : 52-58. DOI: 10.19912/j.0254-0096.tynxb.2021-0591

ULTRA-SHORT-TERM WIND POWER PREDICTION BASED ON VARIABLE FEATURE WEIGHT

  • Wang Xiaodong, Li Shanshan, Liu Yingming, Jing Tonghui, Gao Xing
Author information +
History +

Abstract

Aiming at the problems of insufficient utilization of historical information and the fixed multi-dimensional input weight ignoring the importance of features in different time dimensions in current wind power prediction process, a wind power prediction model based on feature variable weight is proposed. Random forest (RF) is used to analyze the degree of influence of wind speed, wind direction, temperature and other meteorological characteristics at different heights on the wind power and cumulative contribution rate is used to complete the extraction of meteorological features. Singular spectrum analysis (SSA) is used to denoise the extracted features and historical power information, and the denoised data is used as input to establish a cascaded FA-CNN-LSTM multivariate prediction model to predict ultra-short-term wind power. By adding feature attention mechanism (FA) to CNN-LSTM network to adaptively mine feature relationships at different time, the weights of input features at different time dimensions can be dynamically adjusted to enhance the attention of key features at prediction moment, and the prediction performance can be improved. The case study shows that the proposed method can effectively improve the accuracy of ultra-short-term wind power prediction.

Key words

wind power prediction / long short-term memory / random forest / singular spectrum analysis / attention mechanism

Cite this article

Download Citations
Wang Xiaodong, Li Shanshan, Liu Yingming, Jing Tonghui, Gao Xing. ULTRA-SHORT-TERM WIND POWER PREDICTION BASED ON VARIABLE FEATURE WEIGHT[J]. Acta Energiae Solaris Sinica. 2023, 44(2): 52-58 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0591

References

[1] YANG L, HE M, ZHANG J S, et al.Support-vector-machine-enhanced Markov model for short-term wind power forecast[J]. IEEE transactions on sustainable energy, 2015, 6(3): 791-799.
[2] 殷豪, 欧祖宏, 陈德, 等. 基于二次模式分解和级联式深度学习的超短期风电功率预测[J]. 电网技术, 2020,44(2): 445-453.
YIN H, OU Z H, CHEN D, et al.Ultra-short-term wind power prediction based on two-layer mode decomposition and cascaded deep learning[J]. Power system technology, 2020, 44(2): 445-453.
[3] 卢继平, 曾燕婷, 喻华, 等. 基于改进AWNN的风电功率超短期多步预测[J]. 太阳能学报, 2021, 24(1): 166-173.
LU J P, ZENG Y T, YU H, et al.Ultra-short-term wind power multi-step forecasting based on improve AWNN[J]. Acta energiae solaris sinica, 2021, 24(1): 166-173.
[4] 钱政, 裴岩, 曹利宵, 等. 风电功率预测方法综述[J]. 高电压术, 2016, 42(4): 1047-1060.
QIAN Z, PEI Y, CAO L X, et al.Review of wind power forecasting method[J]. High voltage engineering, 2016, 42(4): 1047-1060.
[5] 杨茂, 张罗宾. 基于数据驱动的超短期风电功率预测综述[J]. 电力系统保护与控制, 2019, 47(13): 171-186.
YANG M, ZHANG L B.Based deterministic and probabilistic wind speed forecasting approach[J]. Power system protection and control, 2016, 182: 80-93.
[6] 李俊卿, 李佳秋. 基于Kriging和长短期记忆网络的风电功率预测方法[J]. 太阳能学报, 2021, 41(11): 241-247.
LI J Q, LI J Q.Wind power prediction method based on Kriging and LSTM network[J]. Acta energiae solaris sinica, 2021, 41(11): 241-247.
[7] 薛阳, 王琳, 王舒, 等. 一种结合CNN和GRU网络的超短期风电预测模型[J]. 可再生能源, 2019, 37(3): 456-462.
XUE Y, WANG L, WANG S, et al.An ultra-short-term wind power forecasting model combined with CNN and GRU networks[J]. Renewable energy resources, 2019, 37(3): 456-462.
[8] HAGHI H V, LOTFIFARD S, QU Z H.Multivariate predictive analytics of wind power data for robust control of energy storage[J]. IEEE transactions on industrial informatics, 2016, 12(4): 1350-1360.
[9] 钱勇生, 邵洁, 季欣欣, 等. 基于LSTM-Attention网络的短期风电功率预测[J]. 电机与控制应用, 2019, 46(9): 95-100.
QIAN Y S, SHAO J, JI X X, et al.Short-term wind power prediction based on LSTM-attention network[J]. Motor and control applications, 2019, 46(9): 95-100.
[10] 杨茂, 白玉莹. 基于多位置NWP和门控循环单元的风电功率超短期预测[J]. 电力系统自动化, 2021, 45(1): 177-183.
YANG M, BAI Y Y.Ultra-short-term prediction of wind power based on multi-location numerical weather prediction and gated recurrent unit[J]. Automation of electric power systems, 2021, 45(1): 177-183.
[11] AFSHAR K, BIGDELI N.Data analysis and short term load forecasting in Iran electricity market using singular spectral analysis(SSA)[J]. Energy, 2011, 36: 2620-2627.
[12] LIN Z F, CHENG L L, HUANG G H.Electricity consumption prediction based on LSTM with attention mechanism[J]. IEEE transactions on electrical and electronic engineering, 2020, 15(4): 556-562.
[13] LIN X, JING X L, HU A J, et al.Deterministic and probabilistic multi-step forecasting for short-term wind speed based on secondary decomposition and a deep learning method[J]. Energy conversion and management, 2020, 220: 0196-8014.
[14] 梁志峰, 王峥, 冯双磊, 等. 基于波动规律挖掘的风电功率超短期预测方法[J]. 电网技术, 2020, 44(11): 4096-4104.
LIANG Z F, WANG Z, FENG S L, et al.Ultra-short-term forecasting method of wind power based on fluctuation law mining[J]. Power system technology, 2020, 44(11): 4096-4104.
PDF(1741 KB)

Accesses

Citation

Detail

Sections
Recommended

/