SHORT-TERM WIND POWER PREDICTION BASED ON SVD AND KALMAN FILTER CORRECTION OF MULTI-POSITION NWP

Wang Lijie, Liu Tianmeng, Wang Bo, Hao Ying, Wang Zheng, Zhang Yuanpeng

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (12) : 392-398.

PDF(1851 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1851 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (12) : 392-398. DOI: 10.19912/j.0254-0096.tynxb.2021-0597

SHORT-TERM WIND POWER PREDICTION BASED ON SVD AND KALMAN FILTER CORRECTION OF MULTI-POSITION NWP

  • Wang Lijie1, Liu Tianmeng2, Wang Bo3, Hao Ying1, Wang Zheng3, Zhang Yuanpeng4
Author information +
History +

Abstract

In consideration of the influences of positional and systematic errors in numerical weather prediction (NWP) grid point on the short-term wind power prediction accuracy, this paper puts forward a short-term wind power prediction model for the correction of multi-position NWP based on the singular value decomposition (SVD) and Kalman filtering, which firstly conducts the feature extraction as well as dimension-reduction process on the multi-position NWP, uses Kalman filtering method to correct the data of wind speed in NWP and to reduce the systematic error of NWP, and finally uses the corrected NWP data to build the short-term wind power prediction model based on the extreme random forest algorithm. Through the simulation of one wind farm as well as the comparison with single-position, non-dimension-reduction and uncorrected models, the results indicate that the dimension-reduction and corrected models have the best prediction effects, and the average error and root-mean-square error (RMSE) are 7.94% and 9.96%, respectively.

Key words

wind power prediction / numerical weather prediction / singular value decomposition / Kalman filter / extreme random forest

Cite this article

Download Citations
Wang Lijie, Liu Tianmeng, Wang Bo, Hao Ying, Wang Zheng, Zhang Yuanpeng. SHORT-TERM WIND POWER PREDICTION BASED ON SVD AND KALMAN FILTER CORRECTION OF MULTI-POSITION NWP[J]. Acta Energiae Solaris Sinica. 2022, 43(12): 392-398 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0597

References

[1] 韩自奋, 景乾明, 张彦凯. 风电预测方法与新趋势综述[J]. 电力系统保护与控制, 2019, 47(24): 178-187.
HAN Z F, JING Q M, ZHANG Y K.A summary of wind power forecasting methods and new trends[J]. Power system and protection control, 2019, 47(24): 178-187.
[2] 王丽婕, 王勃, 王铮, 等. 基于数学形态学聚类与果蝇优化算法的风电功率短期预测[J]. 太阳能学报, 2019, 40(12): 3621-3627.
WANG L J, WANG B, WANG Z, et al.Wind power short-term prediction based on mathematical morphology cluster analysis and fruit fly optimization[J]. Acta energiae solaris sinica, 2019, 40(12): 3621-3627.
[3] 冯双磊. 新能源发电功率预测技术[R]. 北京: 中国电机工程学会, 2018.
FENG S L.Forecasting technology of renewable power generation[R]. Beijing: Chinese Society of Electrical Engineering, 2018.
[4] 宋家康, 彭勇刚, 蔡宏达, 等. 考虑多位置NWP和非典型特征的短期风电功率预测研究[J]. 电网技术, 2018, 42(10): 3234-3242.
SONG J K, PENG Y G, CAI H D, et al.Research on short-term wind power forecasting considering multi-location NWP and atypical characteristics[J]. Power grid technology, 2018, 42(10): 3234-3242.
[5] KHALID M, SAVKIN A V.A method for short-term wind power prediction with multiple observation points[J]. IEEE transactions on power systems, 2012, 27(2): 579-586.
[6] 王丽婕, 冬雷, 高爽. 基于多位置NWP与主成分分析的风电功率短期预测[J]. 电工技术学报, 2015, 30(5): 79-84.
WANG L J, DONG L, GAO S.Short-term prediction of wind power based on multi-location NWP and principal component analysis[J]. Journal of electrical engineering, 2015, 30(5): 79-84.
[7] RANABOLDO M.Multiple linear regression MOS for short-term wind power forecast[D]. Barcelona: University of Barcelona, 2011.
[8] 肖擎曜, 胡非, 范绍佳. 风能数值预报的模式输出统计(MOS)研究[J]. 资源科学, 2017, 39(1): 116-124.
XIAO Q Y, HU F, FAN S J.Research on model output statistics(MOS) of numerical forecast of wind energy[J]. Resources science, 2017, 39(1): 116-124.
[9] 陈昊, 张建忠, 许超, 等. 基于多重离群点平滑转换自回归模型的短期风电功率预测[J]. 电力系统保护与控制, 2019, 47(1): 73-79.
CHEN H, ZHANG J Z, XU C, et al.Short-term wind power prediction based on multiple outlier smooth transition autoregressive model[J]. Power system protection and control, 2019, 47(1): 73-79.
[10] 陈烨, 吴浩, 史俊祎, 等. 奇异值分解方法在日负荷曲线降维聚类分析中的应用[J].电力系统自动化, 2018, 42(3): 105-110.
CHEN Y, WU H, SHI J Y, et al.Application of singular value decomposition method in daily load curve dimensionality reduction clustering analysis[J]. Power system automation, 2018, 42(3): 105-110.
[11] GALANIS G, LOUKA P, KATSAFADOS P, et al.Application of Kalman filters based on non-linear functions to numerical weather predictions[J]. Annales geophysicae, 2006, 24(10): 2451-2460.
[12] HARRINGTON P.Machine learning in action[M]. America: Manning Publications, 2012: 252-257.
[13] LOUKA P, GALANIS G, SIEBERT N.Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering[J]. Journal of wind engineering and industrial aerodynamic, 2008, 96(12): 2348-2362.
[14] CASSOLA F, BURLANDO M.Wind speed and wind energy forecast through Kalman filtering of numerical weather prediction model output[J]. Applied energy, 2012, 99: 154-166.
PDF(1851 KB)

Accesses

Citation

Detail

Sections
Recommended

/