STUDY ON HEAT TRANSFER CHARACTERISTICS AND OPTIMAL DESIGN OF CLOSED DEEP SEAWATER COOLING SYSTEM

Liu Yanfeng, Zhao Shunian, Zhou Yong, Zhuang Zhaoben, Chen Yaowen, Liu Huaican

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (12) : 1-12.

PDF(2922 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2922 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (12) : 1-12. DOI: 10.19912/j.0254-0096.tynxb.2021-0623

STUDY ON HEAT TRANSFER CHARACTERISTICS AND OPTIMAL DESIGN OF CLOSED DEEP SEAWATER COOLING SYSTEM

  • Liu Yanfeng1,2, Zhao Shunian2, Zhou Yong1, Zhuang Zhaoben2, Chen Yaowen1,2, Liu Huaican3
Author information +
History +

Abstract

In view of the high temperature and humidity in the low-latitude island area, the long running time of the air conditioner throughout the year and the high transportation cost of conventional energy, it is difficult for the traditional high energy consumption air conditioning system to adapt. In this paper, a closed air conditioning system using deep sea water for cooling is proposed. According to the difference of heat transfer characteristics, the heat transfer pipeline is divided into two parts: vertical heat transfer pipeline and submarine heat transfer coil. The effects of pipe diameter and flow velocity on the heat transfer performance of vertical pipe and submarine heat transfer coil are studied by numerical simulation. The results show that the pipe diameter of the vertical section is less than 0.6 m and the flow velocity in the range of 1-2 m/s can ensure higher heat transfer performance, while for the submarine heat exchanger coil section, the optimum diameter is 0.025 to 0.05 m and the best flow velocity is 0.4-0.8 m/s. On this basis, the mathematical model of annual cost value suitable for the optimal design of vertical pipe section is established, the specific friction and flow velocity are calculated, and the hydraulic calculation table for design is formed. The design line diagram and its modified formula suitable for the engineering design of submarine heat exchanger coil section are given.

Key words

seawater / cooling systems / heat transfer performance / optimization

Cite this article

Download Citations
Liu Yanfeng, Zhao Shunian, Zhou Yong, Zhuang Zhaoben, Chen Yaowen, Liu Huaican. STUDY ON HEAT TRANSFER CHARACTERISTICS AND OPTIMAL DESIGN OF CLOSED DEEP SEAWATER COOLING SYSTEM[J]. Acta Energiae Solaris Sinica. 2022, 43(12): 1-12 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0623

References

[1] 蒋爽, 端木琳, 李震, 等. 海水空调—空调节能环保新技术[J]. 建筑热能通风空调, 2006(4): 28-34.
JIANG S, DUANMU L, LI Z, et al.Seawater air conditioning—a new technology of energy conservation and environmentally protection of air conditioning[J]. Building energy & environment, 2006(4): 28-34.
[2] 乔木. 海水制冷热泵系统的理论与实验研究[D]. 天津: 天津科技大学, 2006.
QIAO M.Theoretical and experimental study on seawater refrigeration & heat pump systems[D]. Tianjin: Tianjin University of Science & Technology, 2006.
[3] 胡松涛, 陈茂科, 郭潇潇, 等. 海水源热泵与传统空调系统能耗比较分析[J]. 青岛理工大学学报, 2008, 29(2):1-5, 13.
HU S T, CHEN M K, GUO X X, et al.Energy consumption analysis and comparison between ocean source heat pump and traditional air conditioning system[J]. Journal of Qingdao Technological University, 2008, 29(2): 1-5, 13.
[4] 安维峥, 王维民, 石永强, 等. 海洋平台海水换热器腐蚀防护现状与趋势[J]. 广州化工, 2010, 38(1): 23-26.
AN W Z, WANG W M, SHI Y Q, et al.Present situation and trend of corrosion protection of seawater heat exchanger on offshore platform[J]. Guangzhou chemical, 2010, 38(1): 23-26.
[5] 杨帅. 海水板式换热器微生物污垢特性及传热强化的研究[D]. 青岛: 中国海洋大学, 2014.
YANG S.Experimental investigation on the microbial fouling characteristics and heat transfer enhancement of the seawater plate heat exchanger[D]. Qingdao: Ocean University of China, 2014.
[6] 俞洁. 用于海水源热泵系统的抛管式换热器优化研究[D]. 天津: 天津大学, 2012.
YU J.An optimization research on casted heat exchanger used in seawater source heat pump system[D]. Tianjin: Tianjin University, 2012.
[7] 郑万冬. 海水源热泵用双螺旋管海水换热器传热特性的研究[D]. 天津: 天津大学, 2015.
ZHENG W D.Heat transfer characteristics of helical coil heat exchanger for seawater-source heat pump[D]. Tianjin: Tianjin University, 2015.
[8] LIU L, WANG M Q, CHEN Y.A practical research on capillaries used as a front-end heat exchanger of seawater-source heat pump[J]. Energy, 2019, 171: 170-179.
[9] HUNT J D, BYERS E, SÁNCHEZ A S. Technical potential and cost estimates for seawater air conditioning[J]. Energy, 2019, 166: 979-988.
[10] VAN RYZIN J C, LERAAND T K. Air conditioning with deep seawater-a reliable cost effective technology[C]//Proceeding of IEEE Oceans’91 Conference, Hawaii, 1991.
[11] NEWMAN L, HERBERT Y.The use of deep water cooling systems: two Canadian examples[J]. Renewable energy, 2008, 34(3): 727-730.
[12] “典型深水平台概念设计研究”课题组. 海洋深水立管最小壁厚计算方法[C]//2005年度海洋工程学术会议, 中国丽江, 2005.
Research Group on Conceptual Design of Typical Deepwater Platform. Calculation method of minimum wall thickness of marine deep-water riser[C]//2005 Ocean Engineering Academic Conference, China, Lijiang, 2005.
[13] 胡知辉, 佟光军, 郭学龙, 等. 国内外深水海底管道技术发展现状概述[J]. 石油工程建设, 2018(5): 6-10.
HU Z H,TONG G J,GUO X L,et al.Overview on current status of deepwater pipeline technology development in China and abroad[J]. Petroleum engineering construction, 2018(5): 6-10.
[14] 李晓辰. 低温海水外掠圆管流动与换热规律研究[D]. 青岛: 中国石油大学(华东), 2017.
LI X C.Study on Convective heat transfer of hypothermic seawater flow across a tube[D]. Qingdao: China University of Petroleum(East China), 2017.
[15] 宋雪丹. 极端热湿气候区建筑冷负荷影响因素及特性分析[D]. 西安: 西安建筑科技大学, 2018.
SONG X D.Characteristics and influence factors of building cooling load in extreme hot-humid region[D]. Xi’an: Xi’an University of Architectural and Technology, 2018.
PDF(2922 KB)

Accesses

Citation

Detail

Sections
Recommended

/