EFFECT OF BUILDING SHAPE ON MICROSITING SELECTION OF WIND TURBINES ON BUILDING ROOF

Hou Yali, Li Rongyang, Di Jianchen, Wang Jianwen, Li Guanghao

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (12) : 344-352.

PDF(3009 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3009 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (12) : 344-352. DOI: 10.19912/j.0254-0096.tynxb.2021-0636

EFFECT OF BUILDING SHAPE ON MICROSITING SELECTION OF WIND TURBINES ON BUILDING ROOF

  • Hou Yali1,2, Li Rongyang1, Di Jianchen1, Wang Jianwen1, Li Guanghao1
Author information +
History +

Abstract

Aiming at the influence of building shapes on micro-siting selection of wind turbines on building roof, turbulent characteristics of wind on roof of buildings with four different shapes are studied by using CFD. The sensitivity analysis of the building shape on wind direction is carried out, and wind speed and turbulence intensity at the top of buildings are analyzd. The results show that buildings with round curve shapes are more favorable for installation wind turbines, which can be installed at a lower height. Meanwhile the long axis of the building is closer to the short axis, roofs of the building is more favorable for installation wind turbine. When install the wind turbine on the top of buildings with four shapes, the favorable installation height with U/U0≥1 can ensure the effective output power and operation safety of the wind turbine. In the absence of prevailing wind direction, the lowest center of buildings with four shapes is beneficial for installation wind turbines, while the installation height is the lowest. Hence, the lowest installation height of wind turbines in the center of the cylinder, ellipsoid, cube and cuboid buildings is 1.05H,1.09H,1.11H and 1.14H, respectively.

Key words

building / wind turbines / turbulence / wind speed / micro-siting selection

Cite this article

Download Citations
Hou Yali, Li Rongyang, Di Jianchen, Wang Jianwen, Li Guanghao. EFFECT OF BUILDING SHAPE ON MICROSITING SELECTION OF WIND TURBINES ON BUILDING ROOF[J]. Acta Energiae Solaris Sinica. 2022, 43(12): 344-352 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0636

References

[1] TOJA-SILVAF F, KDND T, PERALTAC C, et al.A review of computational fluid dynamics (CFD) simulations of the wind flow around buildings for urban wind energy exploitation[J]. Journal of wind engineering and industrial aerodynamics, 2018, 180(2): 66-87.
[2] KC A, WHALE J, URMEE T, et al.Urban wind conditions and small wind turbines in the built environment: a review[J]. Renewable energy, 2019, 131(1): 268-283.
[3] TOJA-SILVAF F, PERALTAC C, LOPEZ-GARCIA O, et al.On roof geometry for urban wind energy exploitation in high-rise buildings[J]. Computation, 2015, 3(2): 299-325.
[4] WANG B, COTL D, ADOLPHE L, et al.Estimation of wind energy over roof of two perpendicular buildings[J]. Energy and buildings, 2015, 88(2): 57-67.
[5] BLACKMORE P.Building-mounted micro-wind turbines on high-rise and commercial buildings[R]. Watford: BRE, 2010.
[6] KONO T, KOGAKI T, KJWATA T.Numerical investigation of wind conditions for roof-mounted wind turbines: effects of wind direction and horizontal aspect ratio of a high-rise cuboid building[J]. Energies, 2016, 9(11): 907-927.
[7] LIU S M, PAN W X, ZHAO X W, et al.Influence of surrounding buildings on wind flow around a building predicted by CFD simulations[J]. Building and environment, 2018, 140: 1-10.
[8] 邸建琛, 侯亚丽, 吕爱静, 等. 非等高建筑物群内风力机的微观选址[J]. 工程热物理学报, 2020, 41(4): 898-906.
DI J C, HOU Y L, LYU A J, et al.Micrositing of rooftop wind turbine in the unequal height building group[J].Journal of engineering therm ophysics, 2020, 41(4): 898-906.
[9] TOMINAG Y, MOCHIDA A, YOSHIE R, et al.AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings[J]. Journal of wind engineering and industrial aerodynamics, 2008, 96: 1749-1761.
[10] 侯亚丽, 汪建文, 王强, 等. 建筑顶面风力机微观选址数值分析方法的研究[J]. 太阳能学报, 2018, 39(5):1351-1358.
HOU Y L, WANG J W, WANG Q, et al.Research on method of micrositing of rooftop wind turbine at the top of buildings[J]. Acta energiae solaris sinica, 2018, 39(5): 1351-1358.
[11] MILLWARD-HOPKINS J T, TOMLIN A S, MA L, et al. Estimating aerodynamic parameters of urban-like surfaces with heterogeneous building heights[J]. Boundary-layer meteorology, 2011, 141(3): 443-465.
[12] 邸建琛. 高层建筑物顶面风力机微观选址的研究[D]. 呼和浩特: 内蒙古工业大学, 2020.
DI J C.Study on micro location of wind turbine on top of high-rise buildings[D]. Hohhot: Inner Mongolia Unirersity of Technoloyy, 2020.
[13] GOUSSEAN P, BLOCKEN B, VAN HEIJST G J E. Quality assessment of Large-eddy simulation of wind flow around a high-rise building: validation and solution verification[J]. Computers and fluids, 2013, 79: 120-133.
[14] International Electro Technical Commission. International Standard IEC 61400-61401. Wind turbine generator systems-part 1: Safety requirements[S].
PDF(3009 KB)

Accesses

Citation

Detail

Sections
Recommended

/