COUPLED DYNAMIC ANALYSIS OF MODULAR FLOATING STRUCTURE COMBINED ARTIFICIAL REEF AND WAVE ENERGY CONVERTER

Li Yanwei, Mo Wenyuan, Ren Nianxin, Yu Yuekai

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (12) : 489-494.

PDF(1782 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1782 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (12) : 489-494. DOI: 10.19912/j.0254-0096.tynxb.2021-0647

COUPLED DYNAMIC ANALYSIS OF MODULAR FLOATING STRUCTURE COMBINED ARTIFICIAL REEF AND WAVE ENERGY CONVERTER

  • Li Yanwei1, Mo Wenyuan1, Ren Nianxin1, Yu Yuekai2
Author information +
History +

Abstract

A novel modular floating structure combined artificialreef and wave energy converter (WEC) is proposed, so as to make comprehensive use of marine space, biological resources and renewable energy. Considering the multi-body coupling effect and mechanical coupling effect between the hexagonal floating structure and the floating artificial reef, the coupling time-domain analysis model of the integrated structure system is established based on potential theory. The design parameters of the floating artificial reef and the WEC are preliminary optimized. The dynamic response characteristics and the power output characteristics of the new integrated structure system under typical sea conditions are studied. It is revealed that the outside floating artificial reef can produce considerable energy while reducing the influence of wave load on the inside hexagonal floating structure. In addition, the safety of the integrated structure system under extreme sea conditions is further verified.

Key words

wave energy conversion / tension-leg platform / dynamic analysis / modular floating structure / artificial reef

Cite this article

Download Citations
Li Yanwei, Mo Wenyuan, Ren Nianxin, Yu Yuekai. COUPLED DYNAMIC ANALYSIS OF MODULAR FLOATING STRUCTURE COMBINED ARTIFICIAL REEF AND WAVE ENERGY CONVERTER[J]. Acta Energiae Solaris Sinica. 2022, 43(12): 489-494 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0647

References

[1] ABHINAV K A, COLLU M, BENJAMINS S, et al.Offshore multi-purpose platforms for a blue growth: a technological, environmental and socio-economic review[J]. Science of the total environment, 2020, 734: 138256.
[2] LI L, CARLO R, MAURIZIO C, et al.Analysis of the coupled dynamic response of an offshore floating multi-purpose platform for the blue economy[J]. Ocean engineering, 2020, 217: 107943.
[3] REN N X, WU H B, MA Z, et al.Hydrodynamic analysis of a novel modular floating structure system with central tension-leg platforms[J]. Ships and offshore structures, 2020, 15: 1700035.
[4] REN N X, WU H B, LIU K, et al.Hydrodynamic analysis of a modular floating structure with tension-leg platforms and wave energy converters[J]. Journal of marine science and engineering, 2021, 9: 9040424.
[5] CHENG Y, XI C, DAI S S, et al.Performance characteristics and parametric analysis of a novel multi-purpose platform combining a moonpool-type floating breakwater and an array of wave energy converters[J]. Applied energy, 2021, 292: 116888.
[6] NGUYEN H P, WANG C M, FLOCARD F, et al.Extracting energy while reducing hydroelastic responses of VLFS using a modular raft WEC-type attachment[J]. Applied ocean research, 2019, 84: 302-316.
[7] 彭伟, 张继生, 范亚宁, 等. 结合防波堤的振荡摇摆式波浪能装置试验研究[J]. 太阳能学报, 2021, 42(2):295-301.
PENG W, ZHANG J S, FAN Y N, et al.Experimental study on oscillating flap-type wave energy device integrated with breakwater[J]. Acta energiae solaris sinica, 2021, 42(2): 295-301.
[8] 陈勇, 于长清, 张国胜, 等. 人工鱼礁的环境功能与集鱼效果[J]. 大连水产学院学报, 2002, 17(1): 64-69.
CHEN Y, YU C Q, ZHANG G S, et al.The environmental function and fish gather effect of artificial reefs[J]. Journal of Dalian Ocean University, 2002, 17(1): 64-69.
[9] 张健, 冯德军, 王萍, 等. 波浪作用下箱网式浮鱼礁水动力特性研究[J]. 中国水产科学, 2019, 26(5): 1014-1020.
ZHANG J, FENG D J, WANG P, et al.Hydrodynamic characteristics of a cage-net floating reef in waves[J]. Journal of fishery sciences of China, 2019, 26(5): 1014-1020.
[10] 余求妹, 马家志, 安玉, 等. 浮绳式网箱人工浮鱼礁的设计优势及问题的探讨[J]. 安徽农业科学, 2013, 41(19): 8194-8195.
YU Q M, MA J Z, AN Y, et al.The preliminary study of design advantages and problems on artificial floating fish reef of floating rope cage[J]. Journal of Anhui agricultural science, 2013, 41(19): 8194-8195.
[11] 张丽珍, 王江涛, 胡庆松, 等. 近海中上层柔性浮鱼礁设计与应用[J]. 上海海洋大学学报, 2016, 25(4): 613-619.
ZHANG L Z, WANG J T, HU Q S, et al.Design and application of offshore middle-upper-layer flexible floating reefs[J]. Journal of Shanghai Ocean University, 2016, 25(4): 613-619.
[12] 桂福坤, 左孝, 潘昀, 等. 波浪作用下刚性框架浮体及其锚绳运动数值模拟精度分析[J]. 海洋工程, 2018, 6(4): 1-10.
GUI F K, ZUO X, PAN Y, et al.The effect on numerical precision for simulating frame floating structure tethered by a mooring cable in waves[J]. The ocean engineering, 2018, 6(4): 1-10.
[13] ANSYS, Inc.ANSYS AQWA User’s Manual[R] (Release 13.0), 2010.
[14] 任年鑫, 马哲, 欧进萍. 新型海上浮式风力机概念设计[J]. 太阳能学报, 2012, 33(10): 1710-1714.
REN N X, MA Z, OU J P.A new conceptual design for offshore floating wind turbine[J]. Acta energiae solaris sinica, 2012, 33(10): 1710-1714.
[15] REN N X, LI Y G, OU J P.The wind-wave tunnel test of a TLP type floating wind turbine[J]. Journal of renewable and sustainable energy, 2012, 4(6): 299-312.
[16] WANG Z F, ZHOU L M, DONG S, et al.Wind wave characteristics and engineering environment of the South China Sea[J]. Journal of Ocean University of China, 2014, 13(6): 893-900.
[17] GAO H J, LIANG B C, SHAO Z X.A global climate analysis of wave parameters with a focus on wave period from 1979 to 2018[J]. Applied ocean research, 2021, 111(1): 102652.
PDF(1782 KB)

Accesses

Citation

Detail

Sections
Recommended

/