RESEARCH ON LIFETIME DEGRADATION MODELING AND GAUSSIAN STOCHASTIC PROCESS REGRESSION METHOD FOR LIFE PREDICTION OF PHOTOVOLTAIC MODULES

Tang Shengxue, Song Xiao, Li Ming, Yao Shuailiang, Chen Li, Sun Zhiguo

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (12) : 41-49.

PDF(1952 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1952 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (12) : 41-49. DOI: 10.19912/j.0254-0096.tynxb.2021-0687

RESEARCH ON LIFETIME DEGRADATION MODELING AND GAUSSIAN STOCHASTIC PROCESS REGRESSION METHOD FOR LIFE PREDICTION OF PHOTOVOLTAIC MODULES

  • Tang Shengxue1,2, Song Xiao1,2, Li Ming3, Yao Shuailiang3, Chen Li1,2, Sun Zhiguo1,2
Author information +
History +

Abstract

The degradation process of photovoltaic(PV) lifetime with service time is highly nonlinear and random due to internal aging and external environment. Aiming at the degradation mechanism and process of PV modules, this paper analyzes the degradation process of PV modules, the degradation factors and their effects on the characteristics of PV modules, and proposes a degradation circuit model of PV cell based on exponential degradation. The degradation model is used to quantitatively analyze the influence of degradation factors on the output power. Then, the equivalent series resistance and output power are selected as the life prediction indicators, and a joint Gaussian process life prediction method based on output power and equivalent series resistance is proposed, and the influence of kernel function on life prediction is analyzed. Finally, Simulation and verifications show that the proposed life prediction model has the advantages of high accuracy and strong robustness.

Key words

photovoltaic modules / degradation / model / Gaussian process regression(GPR) / life prediction

Cite this article

Download Citations
Tang Shengxue, Song Xiao, Li Ming, Yao Shuailiang, Chen Li, Sun Zhiguo. RESEARCH ON LIFETIME DEGRADATION MODELING AND GAUSSIAN STOCHASTIC PROCESS REGRESSION METHOD FOR LIFE PREDICTION OF PHOTOVOLTAIC MODULES[J]. Acta Energiae Solaris Sinica. 2022, 43(12): 41-49 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0687

References

[1] NARENDRA A, NAIK N V, PANDA A K, et al.A comprehensive review of PV driven electrical motors[J].Solar energy, 2020, 195: 278-303.
[2] VOSWINCKEL A,MIKOLAJICK T, WESSELAK V.Influence of the active leakage current pathway on the potential induced degradation of CIGS thin film solar modules[J]. Solar energy, 2020, 197: 455-461.
[3] CHIN V J, SALAM Z, ISHAQUE K.An accurate modelling of the two-diode model of PV module using a hybrid solution based on differential evolution[J]. Energy conversion & management, 2016, 124: 42-50.
[4] DOUMANE R, BALISTROU M, LOGERAIS P O, et al.A circuit-based approach to simulate the characteristics of a silicon photovoltaic module with aging[J]. Journal of solar energy engineering, 2015, 137(2): 021020-021026.
[5] HUANG C, WANG L.Simulation study on the degradation process of photovoltaic modules[J]. Energy conversion and management, 2018, 165: 236-243.
[6] PARK S H, KIM J H.Application of gamma process model to estimate the lifetime of photovoltaic modules[J]. Solar energy, 2017, 147: 390-398.
[7] 余荣斌, 刘桂雄, 徐欢. 基于β分布统示法的光伏组件性能退化可靠度估算[J]. 仪器仪表学报, 2015, 36(11): 2586-2593.
YU R B, LIU G X, XU H.β-distribution uniform expression based photovoltaic modules reliability evaluation with degradation data distribution[J]. Chinese journal of scientific instrument, 2015, 36(11): 2586-2593.
[8] 刘桂雄, 余荣斌, 徐欢. 加速退化下光伏组件伪失效寿命分布估算[J]. 光学精密工程, 2016, 24(9): 2183-2191.
LIU G X, YU R B, XU H.Estimation of pseudo-failure lifetime distribution for photovoltaic modules based on accelerated degradation[J]. Optics and precision engineering, 2016, 24(9): 2183-2191.
[9] CHARKI A, LARONDE R, DAVID B.Accelerated degradation testing of a photovoltaic module[J]. Journal of photonics for energy, 2013, 3(1): 1504-1509.
[10] 顾熹, 廖志伟. 基于相空间重构和高斯过程回归的短期负荷预测[J]. 电力系统保护与控制, 2017, 45(5): 73-79.
GU X, LIAO Z W.Short-term load forecasting based on phase space reconstruction and Gaussian process regression[J]. Power system protection and control, 2017, 45(5): 73-79.
[11] KAHOULl N, HOUABES M, SADOK M.Assessing the early degradation of photovoltaic modules performance in the Saharan region[J]. Energy conversion & management,2014, 82(6): 320-326.
[12] 任先培, 程浩然, 何发林, 等. 晶体硅太阳电池光衰减现象研究的新进展[J]. 材料导报, 2012, 26(11): 15-21.
REN X P, CHENG H R, HE F L, et al.New research progress in light induced degradation of crystalline silicon solar cell[J]. Materials reports, 2012, 26(11): 15-21.
[13] 黄盛娟, 唐荣, 唐立军. 光伏组件功率衰减分析研究[J]. 太阳能学报, 2015, 36(6): 21-25.
HUANG S J, TANG R, TANG L J.Analysis and research on power attenuation of photovoltaic modules[J]. Acta energiae solaris sinica, 2015, 36(6): 21-25.
[14] VAZQUEZ M, REY-STOLLE I.Photovoltaic module reliability model based on field degradation studies[J].Progress in photovoltaics research & applications, 2010, 16(5): 419-433.
[15] REIS A M, COLEMAN N T, MARSHALL M W, et al.Comparison of PV module performance before and after 11-years of field exposure[C]//Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference,New Orleans, LA, USA, 2002: 1432-1435.
[16] KUITCHE J M.A statistical lifetime prediction for photovoltaic modules[D]. Phoenix: Arizona State University, 2014.
[17] HAN H.Analysis of the degradation of monocrystalline silicon photovoltaic modules after long-term exposure for 18 years in a hot-humid climate in China[J]. IEEE journal of photovoltaics, 2018, 8(3): 806-812.
[18] JORDAN D C, SILVERMAN T J, SEKULIC B, et al.PV degradation curves: non-linearities and failure modes[J]. Progress in photovoltaics: research and applications, 2017, 25(7): 583-591.
[19] JAWAD A, ALESSANDROC, STEFANIA F, et al.Detection of typical defects in silicon photovoltaic modules and application for plants with distributed MPPT configuration[J]. Energies, 2019, 12(23): 4547.
[20] 何志昆, 刘光斌, 赵曦晶, 等. 高斯过程回归方法综述[J]. 控制与决策, 2013, 28(8): 1121-1129.
HE Z K, LIU G B, ZHAO X J, et al.Overview of gaussian process regression[J]. Control and decision, 2013, 28(8): 1121-1129.
[21] RASMUSSEN C E, WILLIAMS C.Gaussian processes for machine learning[M]. Cambridge: MIT Press, 2006: 7-32.
[22] 宗文婷, 卫志农, 孙国强, 等. 基于改进高斯过程回归模型的短期负荷区间预测[J]. 电力系统及其自动化学报, 2017, 29(8): 22-28.
ZONG W T, WEI Z N, SUN G Q, et al.Short-term load interval prediction based on improved gaussian process regression model[J]. Proceedings of the CSU-EPSA, 2017, 29(8): 22-28.
[23] 李奎, 段宇, 黄少坡, 等. 基于Wiener过程的交流接触器剩余电寿命预测[J]. 中国电机工程学报, 2018, 38(13): 3978-3986.
LI K, DUAN Y, HUANG S P, et al.Residual electrical life prediction of AC contactor based on the wiener process[J]. Proceedings of the CSEE, 2018, 38(13): 3978-3986.
PDF(1952 KB)

Accesses

Citation

Detail

Sections
Recommended

/