RESEARCH ON LOAD DISTRIBUTION OF THERMAL POWER UNIT BASED ON BRANCH-BOUND METHOD

Hu Zunmin, Liu Ketian, Yu Guoqiang, Shi Yiyue, Tang Keyi

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (12) : 282-288.

PDF(1685 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1685 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (12) : 282-288. DOI: 10.19912/j.0254-0096.tynxb.2021-0706

RESEARCH ON LOAD DISTRIBUTION OF THERMAL POWER UNIT BASED ON BRANCH-BOUND METHOD

  • Hu Zunmin1, Liu Ketian2, Yu Guoqiang1, Shi Yiyue1, Tang Keyi1
Author information +
History +

Abstract

Aiming at the peak load regulation problem of large-scale new energy grid-connected, a load distribution methods for thermal power units in different peak load regulation stages is proposed. The capacity and cost of peak load regulation of thermal power units are analyzed and the relationship between they is studied. With the goal of minimizing the total cost of coal consumption and the unit start-stop costs, an optimization model for load distribution of thermal power units in different peak load regulation stages is established. According to the ramp rate and landslide rate of thermal power units, a combination strategy of units participating in load distribution is proposed, and the branch-bound method is used to solve the load distribution optimization model. The example shows that as the peak load regulation depth of thermal power units increases, unit coal consumption cost and start-stop cost will decrease, and additional coal consumption cost and unit loss costs under deep peak load regulation will increase.

Key words

wind power / load distribution / thermal power / branch-bound method / peak load regulation / unit loss costs

Cite this article

Download Citations
Hu Zunmin, Liu Ketian, Yu Guoqiang, Shi Yiyue, Tang Keyi. RESEARCH ON LOAD DISTRIBUTION OF THERMAL POWER UNIT BASED ON BRANCH-BOUND METHOD[J]. Acta Energiae Solaris Sinica. 2022, 43(12): 282-288 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0706

References

[1] 董超, 张彦涛, 刘嘉宁, 等. 考虑火电机组深度调峰的实时发电计划模型及应用[J]. 电力自动化设备, 2019, 39(3): 108-113.
DONG C, ZHANG Y T, LIU J N, et al.Real-time generation scheduling model and its application considering deep peak regulation of thermal power units[J]. Electric power automation equipment, 2019, 39(3): 108-113.
[2] 葛维春. 电网非常规调峰与弃风协调调度方法[J]. 太阳能学报, 2019, 40(11): 3324-3330.
GE W C.Coordinated dispatching method of unconventional peak-shaving and abandoned wind for power grid[J]. Acta energiae solaris sinica, 2019, 40(11): 3324-3330.
[3] 李军徽, 邢志同, 穆钢, 等. 供热期调峰约束下电网弃风情况分析[J]. 太阳能学报, 2018, 39(3): 596-602.
LI J H, XING Z T, MU G, et al.Analysis on wind power curtailment under restriction of peak load regulation during heating period[J]. Acta energiae solaris sinica, 2018, 39(3): 596-602.
[4] 马静洁, 张少华, 李雪. 考虑低谷调峰限制和环境成本的发电容量规划[J]. 太阳能学报, 2021, 42(1): 470-475.
MA J J, ZHANG S H, LI X.Generation capacity planning considering base-load cycling capacity constraints and environmental costs[J]. Acta energiae solaris sinica, 2021, 42(1): 470-475.
[5] 廖金龙, 陈波, 丁宁, 等. 考虑一次调频能力的火电机组负荷优化分配[J]. 中国电机工程学报, 2018, 38(增刊1): 168-174.
LIAO J L, CHEN B, DING N, et al.Load optimal distribution of thermal units considering primary frequency control ability[J]. Proceedings of the CSEE, 2018, 38(Supplement1): 168-174.
[6] 汤晓青, 刘辉, 范宇, 等. 基于改进多目标遗传算法的实时发电市场优化调度研究[J]. 电力系统保护与控制, 2017, 45(17): 65-71.
TANG X Q, LIU H, FAN Y, et al.Analysis of the optimal dispatch in real-time generation market using an improved multi-objective genetic algorithm[J]. Power system protection and control, 2017, 45(17): 65-71.
[7] 黄丽, 彭道刚, 顾立群, 等. 基于改进量子粒子群算法负荷优化分配研究[J]. 控制工程, 2017, 24(7): 1402-1408.
HUANG L, PENG D G, GU L Q, et al.Optimal load distribution in power plants based on improved quantum-behaved particle swarm algorithm[J]. Control engineering, 2017, 24(7): 1402-1408.
[8] 尹元亚, 蒋国臻, 田佳, 等. 基于灰狼优化算法的火电机组负荷优化分配经济性研究[J]. 电气自动化, 2020, 42(1): 75-78.
YIN Y Y, JIANG G Z, TIAN J, et al.Research on economical efficiency of optimized load distribution of thermal power generating units based on grey wolf optimization algorithm[J]. Electrical automation, 2020, 42(1): 75-78.
[9] 林俐, 田欣雨. 基于火电机组分级深度调峰的电力系统经济调度及效益分析[J]. 电网技术, 2017, 41(7): 2255-2262.
LIN L, TIAN X Y.Analysis of deep peak regulation and its benefit of thermal units in power system with large scale wind power integrated[J]. Power system technology, 2017,41(7): 2255-2262.
[10] 刘鹏. 火电厂参与调峰辅助服务策略研究[J]. 东北电力技术, 2018, 39(4): 34-37.
LIU P.Research on coal fired generator participating in peak valley dispatching ancillary service strategy[J].Northeast electric power technology, 2018, 39(4): 34-37.
[11] 王漪, 柳焯, 柳进. 受基本方程规范的火电机组耗量特性系数辨识[J]. 中国电机工程学报, 2017, 37(4): 1151-1159.
WANG Y,LIU Z,LIU J.Fuel consumption characteristic coefficients identification restricted to basic equations for thermal power units[J]. Proceedings of the CSEE, 2017, 37(4): 1151-1159.
[12] 王淑云, 娄素华, 吴耀武, 等. 计及火电机组深度调峰成本的大规模风电并网鲁棒优化调度[J]. 电力系统自动化, 2020, 44(1): 118-125.
WANG S Y, LOU S H, WU Y W, et al.Robust optimal dispatch of large-scale wind power integration considering deep peak regulation cost of thermal power units[J].Automation of electric power systems, 2020, 44(1): 118-125.
[13] LIANG H J, LIU Y G, LI F Z,et al.Dynamic economic/emission dispatch including PEVs for peak shaving and valley filling[J]. IEEE transactions on industrial electronics, 2019, 66(4): 2880-2890.
[14] 付蔷. 促进风电消纳的火电灵活性改造深度及经济效益研究[D]. 北京: 北京交通大学, 2018.
FU Q.Research on the depth and economic benefits of thermal power flexibility transformation to promote wind power consumption[D]. Beijing: Beijing Jiaotong University, 2018.
[15] 吕素, 黎灿兵, 曹一家, 等. 基于等综合煤耗微增率的火电机组节能发电调度算法[J]. 中国电机工程学报, 2012, 32(32): 1-8.
LYU S, LI C B, CAO Y J, et al.An energy-saving generation dispatching algorithm for thermal power units based on equal comprehensive coal consumption incremental principle[J]. Proceedings of the CSEE, 2012,32(32): 1-8.
[16] 李军徽, 张嘉辉, 穆钢, 等. 储能辅助火电机组深度调峰的分层优化调度[J]. 电网技术, 2019, 43(11): 3961-3969.
LI J H, ZHANG J H,MU G, et al.Hierarchical optimization scheduling of deep peak shaving for energy-storage auxiliary thermal power generating units[J]. Power system technology,2019, 43(11): 3961-3969.
PDF(1685 KB)

Accesses

Citation

Detail

Sections
Recommended

/