SHORT-TERM WIND POWER FORECASTING BASED ON ATTENTION-GRU WIND SPEED CORRECTION AND STACKING

Yang Guoqing, Liu Shilin, Wang Deyi, Wang Wenkun, Liu Jing

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (12) : 273-281.

PDF(2409 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2409 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (12) : 273-281. DOI: 10.19912/j.0254-0096.tynxb.2021-0712

SHORT-TERM WIND POWER FORECASTING BASED ON ATTENTION-GRU WIND SPEED CORRECTION AND STACKING

  • Yang Guoqing1,2, Liu Shilin1, Wang Deyi1,2, Wang Wenkun1, Liu Jing1,2
Author information +
History +

Abstract

In view of the low accuracy of wind power forecasting due to the deviation of NWP wind speed and actual wind speed when using numerical weather prediction(NWP) data, this paper proposes a short-term wind power forecasting model based on Attention-GRU NWP wind speed correction and multi-algorithm fusion under Stacking framework. Firstly, the Pearson correlation coefficient between NWP prediction wind speed and actual wind speed is analyzed, and a wind speed correction model based on Attention-GRU is established to improve the precision of prediction wind speed. Secondly, considering the meteorological factors such as wind direction, temperature, humidity, air pressure and air density, a multi-algorithm wind power forecasting model based on Stacking framework is proposed, which integrates XGBoost, LSTM, SVR and LASSO. Grid search and cross-validation are used to optimize the model parameters. Finally, two typical wind farms in Northwest and Northeast China are selected to verify the model. The results show that the proposed model can improve the precision of NWP wind speed forecast and effectively improve the forecasting effect of wind power.

Key words

wind power / forecasting / weather forecasting / deep learning / ensemble learning

Cite this article

Download Citations
Yang Guoqing, Liu Shilin, Wang Deyi, Wang Wenkun, Liu Jing. SHORT-TERM WIND POWER FORECASTING BASED ON ATTENTION-GRU WIND SPEED CORRECTION AND STACKING[J]. Acta Energiae Solaris Sinica. 2022, 43(12): 273-281 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0712

References

[1] 林伯强. “十三五”时期中国电力发展成就及“十四五”展望[J]. 中国电业, 2020(12): 22-23.
LIN B Q.China’s electric power development achievements during the “13th Five-Year Plan”period and prospects for the “14th Five-Year Plan”[J]. China electric power, 2020(12): 22-23.
[2] 杨秀媛, 肖洋, 陈树勇. 风电场风速和发电功率预测研究[J]. 中国电机工程学报, 2005(11): 3-7.
YANG X Y, XIAO Y, CHEN S Y.Wind speed and generated power forecasting in wind farm[J]. Proceedings of the CSEE, 2005(11): 3-7.
[3] 薛禹胜, 郁琛, 赵俊华, 等. 关于短期及超短期风电功率预测的评述[J]. 电力系统自动化, 2015, 39(6): 141-151.
XUE Y S, YU C, ZHAO J H, et al.Comments on short-term and ultra-short-term wind power forecasting[J]. Automation of electric power systems, 2015, 39(6): 141-151.
[4] 刘帅, 朱永利, 张科, 等. 基于误差修正ARMA-GARCH模型的短期风电功率预测[J]. 太阳能学报, 2020, 41(10): 268-275.
LIU S, ZHU Y L, ZHANG K, et al.Short-term wind power forecasting based on error correction ARMA-GARCH model[J]. Acta energiae solaris sinica, 2020, 41(10): 268-275.
[5] YANG L, HE M, ZHANG J, et al.Support-vector-machine-enhanced Markov model for short-term wind power forecast[J]. IEEE transactions on sustainable energy, 2017, 6(3): 791-799.
[6] 黄慧, 贾嵘, 董开松. 基于时空相关性的NAR动态神经网络风功率超短期组合预测[J]. 太阳能学报, 2020, 41(10): 311-316.
HUANG H, JIA R, DONG K S.Ultra short-termcombined forecasting of wind power with NAR neural network based on spatio-temporal correlation[J]. Acta energiae solaris sinica, 2020, 41(10): 311-316.
[7] HAN L, ZHANG R, WANG X, et al.Multi-step wind power forecast based on VMD-LSTM[J]. IET renewable power generation, 2019, 13(10): 1690-1700.
[8] 汪欣, 蔡旭, 李征. 结合交叉局部异常因子和注意力机制的超短期风电功率预测方法[J]. 电力系统保护与控制, 2020, 48(23):92-99.
WANG X, CAI X, LI Z.Ultra-short-term wind power forecasting method based on a cross LOF preprocessing algorithm and an attention mechanism[J]. Power system protection and control, 2020, 48(23): 92-99.
[9] DU P W.Ensemble machine learning-based wind forecasting to combine NWP output with data from weather station[J]. IEEE transactions on sustainable energy, 2019, 10(4): 2133-2141.
[10] ANDRADE J R., BESSA R J.Improving renewable energy forecasting with a grid of numerical weather predictions[J]. IEEE transactions on sustainable energy, 2017, 8(4): 1571-1580.
[11] 杨茂, 白玉莹. 基于多位置NWP和门控循环单元的风电功率超短期预测[J]. 电力系统自动化, 2021, 45(1):177-183.
YANG M, BAI Y Y.Ultra-short-term prediction of wind power based on multi-location numerical weather prediction and gated recurrent unit[J]. Automation of electric power systems, 2021, 45(1): 177-183.
[12] 胡帅, 向月, 沈晓东, 等. 计及气象因素和风速空间相关性的风电功率预测模型[J]. 电力系统自动化, 2021, 45(7): 28-36.
HU S, XIANG Y, SHEN X D, et al.Wind power prediction model considering meteorological factor and spatial correlation of wind speed[J]. Automation of electric power systems, 2021, 45(7): 28-36.
[13] 李永刚, 王月, 刘丰瑞, 等. 基于Stacking融合的短期风速预测组合模型[J]. 电网技术, 2020, 44(8): 2875-2882.
LI Y G, WANG Y, LIU F R, et al.Combination model of short-term wind speed prediction based on stacking fusion[J]. Power system technology, 2020, 44(8): 2875-2882.
[14] 史佳琪, 张建华. 基于多模型融合Stacking集成学习方式的负荷预测方法[J]. 中国电机工程学报, 2019, 39(14): 4032-4042.
SHI J Q, ZHANG J H.Load forecasting based on multi-model by stacking ensemble learning[J]. Proceedings of the CSEE, 2019, 39(14): 4032-4042.
[15] 杨国清, 张凯, 王德意, 等. 基于包络线聚类的多模融合超短期光伏功率预测算法[J]. 电力自动化设备, 2021, 41(2): 39-46.
YANG G Q, ZHANG K, WANG D Y, et al.Multi-mode fusion ultra-short-term photovoltaic power prediction algorithm based on envelope clustering[J]. Electric power automation equipment, 2021, 41(2): 39-46.
[16] 乔颖, 鲁宗相, 闵勇. 提高风电功率预测精度的方法[J]. 电网技术, 2017, 41(10): 3261-3268.
QIAO Y, LU Z X, MIN Y.Methods of improving wind power forecasting accuracy[J]. Power system technology, 2017, 41(10): 3261-3268.
[17] HOCHREITER S, SCHMIDHUBER J.Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.
[18] CHUNG J Y, GULCEHRE C, CHO K H, et al.Empirical evaluation of gated recurrent neural networks on sequence modeling: Eprint Arxiv, 10.48550/arXiv. 1412.3555[P]. 2014.
[19] LUONG M T, PHAM H, MANNING C D.Effective approaches to attention-based neural machine translation[J/OL]. Computer science, 2015.
[20] XIONG L, ZHOU W, WANG W, et al.Attention-based relation extraction with bidirectional gated recurrent unit and highway network in the analysis of geological data[J]. IEEE access, 2018, 6: 5705-5715.
[21] CAVALCANTE L, BESSA R J, REIS M, et al.LASSO vector autoregression structures for very short-term wind power forecasting[J]. Wind energy, 2017, 20(4): 657-675.
PDF(2409 KB)

Accesses

Citation

Detail

Sections
Recommended

/