CHEMICAL STRUCTURE, COMBUSTION CHARACTERISTICS AND DYNAMIC ANALYSIS OF RICE HUSK HYDROTHERMAL CARBON

Liu Yaoxin, Wang Enyu, Kan Ze, Zhu Jingwen, Zhang Xiaohui

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (12) : 439-445.

PDF(1684 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1684 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (12) : 439-445. DOI: 10.19912/j.0254-0096.tynxb.2021-0727

CHEMICAL STRUCTURE, COMBUSTION CHARACTERISTICS AND DYNAMIC ANALYSIS OF RICE HUSK HYDROTHERMAL CARBON

  • Liu Yaoxin1, Wang Enyu2, Kan Ze2, Zhu Jingwen3, Zhang Xiaohui4
Author information +
History +

Abstract

Using rice husk as raw material, the effects of hydrothermal reaction intensity on the chemical structure, combustion characteristics and dynamic performance of hydrothermal carbon were investigated by using hydrothermal carbonization technology combined with elemental analysis and thermogravimetric method. The results show that:1) With the increase of reaction intensity, the overall volatiles and oxygen mass fraction of hydrothermal carbon decrease, while the carbon mass fraction gradually increases. When LGR0 is 4.90~6.19, the change of parameters is particularly significant. When LGR0 is 6.19, the carbon and oxygen mass fraction are 50.5% and 21.3%, respectively. The atomic ratios of O/C and H/C are 0.32 and 1.21, respectively;2) Compared with the raw material, the combustion loss of hydrothermal carbon is concentrated in the combustion stage of fixed carbon and volatiles, and the ignition and burnout temperatures both rise slightly;3) When LGR0 increases from 3.25 to 6.49, the volatiles combustion loss decreases, the fixed carbon combustion loss increases, the ignition and burnout temperatures shift to the high temperature region, and the index of integrated combustion characteristics (SN) first increases and then decreases;4) The activation energy of the fixed carbon combustion section is lower than that of the volatile combustion section. The dynamic model used in this study is reliable in the analysis of the hydrothermal carbon combustion dynamics, and the correlation coefficients (R2) are all above 0.92. The results can provide theoretical guidance for hydrothermal carbonation and combustion of rice husk. For example, the reaction intensity parameter LGR0 should be controlled at about 6.19 if carbonation is the main process.

Key words

biomass / burning / dynamics / hydrothermal carbon / thermochemical treatment / composite combustion characteristic index

Cite this article

Download Citations
Liu Yaoxin, Wang Enyu, Kan Ze, Zhu Jingwen, Zhang Xiaohui. CHEMICAL STRUCTURE, COMBUSTION CHARACTERISTICS AND DYNAMIC ANALYSIS OF RICE HUSK HYDROTHERMAL CARBON[J]. Acta Energiae Solaris Sinica. 2022, 43(12): 439-445 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0727

References

[1] 钟悦之, 蒋春来, 宋晓晖, 等. 火电行业“十三五”主要大气污染物减排潜力情景分析研究[J]. 环境科学与管理, 2016, 41(12): 58-62.
ZHONG Y Z, JIANG C L, SONG X H, et al.Analysis of potential emission reduction of major air pollutants in thermal power industry during the 13th Five-Year Plan[J]. Environmental science and management, 2016, 41(12): 58-62.
[2] 张爽. 中国电力行业温室气体排放影响因素及减排策略研究[D]. 天津: 天津大学, 2019.
ZHANG S.Study on the influencing factors and emission reduction strategies of China’s electric power industry [D]. Tianjin: Tianjin University, 2019.
[3] JÓZSEF P, SÁNDOR K, JUDIT O, et al. Bioeconomy: biomass and biomass-based energy supply and demand[J]. New biotechnology, 2021, 30(12): 4-21.
[4] WU D L, YUAN Z Y, LIU S, et al.Recent development of corrosion factors and coating applications in biomass firing plants[J]. Coatings, 2020, 10(10): 1001-1029.
[5] CASTRO-DÍAZ M, UGUNA C N, FLORENTINO L, et al. Evaluation of hydrochars from lignin hydrous pyrolysis to produce biocokes after carbonization[J]. Journal of analytical and applied pyrolysis, 2017, 124: 742-751.
[6] CAI J X, LI B, CHEN C Y, et al.Hydrothermal carbonization of tobacco stalk for fuel application[J]. Bioresource technology, 2016, 7(9): 305-311.
[7] 马腾, 郝彦辉, 姚宗路, 等. 秸秆水热生物炭燃烧特性评价[J]. 农业机械学报, 2018, 49(12): 340-346.
MA T, HAO Y H, YAO Z L, et al.Combustion characteristics evaluation of straw hydrothermal biochar[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(12): 340-346.
[8] 范方宇. 玉米秸秆水热炭化和热解法制备生物炭研究[D]. 合肥: 合肥工业大学, 2017.
FAN F Y.Preparation of biochar by hydrothermal carbonization and pyrolysis of corn straw[D]. Hefei: Hefei University of Technology, 2017.
[9] 范方宇, 邢献军, 施苏薇, 等. 水热生物炭燃烧特性与动力学分析[J]. 农业工程学报, 2016, 32(15): 219-224.
FAN F Y, XING X J, SHI S W, et al.Combustion characteristics and kinetics of hydrothermal biochar[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(15): 219-224.
[10] 樊奥楠, 王淑杰, 刘万毅, 等. 水热炭化温度对稻秆燃料特性影响的研究[J]. 环境科学与技术, 2016, 39(2): 103-106.
FAN A N, WANG S J, LIU W Y, et al.Effects of hydrothermal carbonization temperature on fuel characteristics of rice straw[J]. Environmental science and technology, 2016, 39(2): 103-106.
[11] 刘冬冬, 李金铭, 赵博骏, 等. 秸秆水热炭与热裂解炭结构表征及铅吸附机制研究[J]. 农业机械学报, 2020, 51(12): 304-314.
LIU D D, LI J M, ZHAO B J, et al.Structural characterization of straw hydrothermal carbon and pyrolytic carbon and its adsorption mechanism of lead[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(12): 304-314.
[12] 张英锋, 赵琳, 赵婷婷, 等. 水热炭的制备及其吸附应用的研究进展[J]. 化学教育, 2019, 40(15): 11-15.
ZHANG Y F, ZHAO L, ZHAO T T, et al.Research progress in the preparation of hydrothermal carbon and its adsorption application[J]. Chemistry education, 2019, 40(15): 11-15.
[13] 俞盈, 韩兰芳, 姜晓满. 水热炭的制备、结构特征和应用[J]. 环境化学, 2018, 37(6): 1232-1244.
YU Y, HAN L F, JIANG X M.Preparation,structure and application of hydrothermal carbon[J]. Environmental chemistry, 2018, 37(6): 1232-1244.
[14] GASCÓ G, PAZ-FERREIRO J, ÁLVAREZ M L, et al.Biochars and hydrochars prepared by pyrolysis and hydrothermal carbonisation of pig manure[J]. Waste management, 2018, 35(11): 395-403.
[15] DAI L L, HE C, WANG Y P, et al.Comparative study on microwave and conventional hydrothermal pretreatment of bamboo sawdust: hydrochar properties and its pyrolysis behaviors[J]. Energy conversion and management,2017,15(4): 1-7.
[16] LYNAM J G, REZA M T, YAN W, et al.Hydrothermal carbonization of various lignocellulosic biomass[J]. Biomass conversion and biorefinery, 2015, 7(2): 173-181.
[17] LI Q Y, LIN H S, ZHANG S,et al.Co-hydrothermal carbonization of swine manure and cellulose: influence of mutual interaction of intermediates on properties of the products[J]. Science of the total environment, 2021, 15(7): 8134-8155.
[18] OVEREND R P, CHORNET E.Fractionation of lignocellulosics by steam-aqueous pretreatments[J]. Philosophical Transactions of the Royal Society, Series A: mathematical, physical and engineering sciences, 1987, 32(1): 523-536.
[19] BLACK B A, MICHENER W E, RAMIREZ K J,et al.Aqueous stream characterization from biomass fast pyrolysis and catalytic fast pyrolysis[J]. ACS sustainable chemistry & engineering, 2016, 12(2): 6815-6827.
[20] 董向元, 郭淑青, 王红艳, 等. 桂圆壳水热焦结构和热力学特性分析[J]. 太阳能学报, 2019, 40(8): 2121-2127.
DONG X Y, GUO S Q, WANG H Y, et al.Structure and thermodynamic characteristics of hydrothermal coke for longan shell[J]. Acta energiae solaris sinica, 2019, 40(8): 2121-2127.
[21] YUUKI M, NAOTO T.Preparation of pelletized coke by co-carbonization of caking coal and pyrolyzed char modified with tar produced during pyrolysis of woody biomass[J]. Fuel processing technology, 2019, 193: 328-337.
PDF(1684 KB)

Accesses

Citation

Detail

Sections
Recommended

/