VIBRATION CONTROL OF FLOATING OFFSHORE WIND TURBINE UNDER STOCHASTIC WIND AND WAVE LOADS USING MULTIPLE TUNED MASS DAMPER

Han Dongdong, Wang Wenhua, Li Xin

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (12) : 256-264.

PDF(2796 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2796 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (12) : 256-264. DOI: 10.19912/j.0254-0096.tynxb.2021-0735

VIBRATION CONTROL OF FLOATING OFFSHORE WIND TURBINE UNDER STOCHASTIC WIND AND WAVE LOADS USING MULTIPLE TUNED MASS DAMPER

  • Han Dongdong, Wang Wenhua, Li Xin
Author information +
History +

Abstract

Based on the theory of multi-body dynamics, the coupled analysis model named FAST-SC-MTMD of floating offshore wind turbine with multiple tuned mass damper(MTMD) is established in the recompiled FAST-SC. Taking the barge-type offshore wind turbine as research object, the parameters are designed using the recommended optimization formulas for MTMD in offshore engineering. Then, the mitigation effects of TMD and MTMD are evaluated based on the reductions of structural responses of the floating offshore wind turbine under stochastic environmental loads. It can be seen that the pitch frequency should be prior designated as the MTMD tuning frequencies and the MTMD should be mounted in the nacelle and platform, in order to mitigate the motions of the tower and floating platform effectively.

Key words

offshore wind turbines / vibration control / dynamic response / tuned mass damper / coupled dynamic analysis

Cite this article

Download Citations
Han Dongdong, Wang Wenhua, Li Xin. VIBRATION CONTROL OF FLOATING OFFSHORE WIND TURBINE UNDER STOCHASTIC WIND AND WAVE LOADS USING MULTIPLE TUNED MASS DAMPER[J]. Acta Energiae Solaris Sinica. 2022, 43(12): 256-264 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0735

References

[1] WILLIS D J, NIEZRECKI C, KUCHMA D, et al.Wind energy research: state-of-the-art and future research directions[J]. Renewable energy, 2018, 125: 133-154.
[2] MANZANO-AGUGLIARO F, SÁNCHEZ-CALERO M, ALCAYDE A, et al. Wind turbines offshore foundations and connections to grid[J]. Inventions, 2020, 5(1): 8.
[3] SNYDER B, KAISER M J.Ecological and economic cost-benefit analysis of offshore wind energy[J]. Renewable energy, 2009, 34(6): 1567-1578.
[4] BUTTERFIELD S, MUSIAL W, JONKMAN J, et al.Engineering challenges for floating offshore wind turbines[R]. National Renewable Energy Labatory(NREL), Golden, CO(United States), 2007.
[5] NAMIK H, STOL K.Performance analysis of individual blade pitch control of offshore wind turbines on two floating platforms[J]. Mechatronics, 2011, 21(4): 691-703.
[6] MOHAMMADI E, FADAEINEDJAD R, MOSCHOPOULOS G.Implementation of internal model based control and individual pitch control to reduce fatigue loads and tower vibrations in wind turbines[J]. Journal of sound and vibration, 2018, 421: 132-152.
[7] RAACH S, SCHLIPF D, SANDNER F, et al.Nonlinear model predictive control of floating wind turbines with individual pitch control[C]//2014 American Control Conference, Portland, USA, 2014.
[8] WAKUI T, YOSHIMURA M, YOKOYAMA R.Multiple-feedback control of power output and platform pitching motion for a floating offshore wind turbine-generator system[J]. Energy, 2017, 141: 373-388.
[9] 杨佳佳, 贺尔铭, 姚文旭,等. 抑制海上浮式风力机振动的TMD限位策略研究[J]. 振动与冲击, 2020, 39(15):18-24, 57.
YANG J J, HE E M, YAO W X, et al.TMD limited position strategy for vibration suppression of floating offshore wind turbines[J]. Journal of vibration and shock,2020, 39(15): 18-24, 57.
[10] 黄致谦, 丁勤卫, 李春. 三种漂浮式风力机调谐质量阻尼器稳定性控制研究[J]. 振动与冲击, 2019, 38(21):112-119, 147.
HUANG Z Q, DING Q W, LI C.TMDs control effect on stability of three kinds of floating wind turbine[J]. Journal of vibration and shock, 2019, 38(21): 112-119, 147.
[11] 丁勤卫, 郝文星, 李春, 等. 漂浮式风力机结构动力学响应TMD控制及其参数优化研究[J]. 振动与冲击, 2018, 37(23): 69-78.
DING Q W, HAO W X, LI C, et al.TMD Control and its parametric optimization for structural dynamic response of a floating wind turbine[J]. Journal of vibration and shock, 2018, 37(23): 69-78.
[12] SI Y L, KARIMI H R, GAO H J.Modelling and optimization of a passive structural control design for a spar-type floating wind turbine[J]. Engineering structures, 2014, 69: 168-182.
[13] SI Y L, KARIMI H R, GAO H J.Modeling and parameter analysis of the OC3-hywind floating wind turbine with a tuned mass damper in nacelle[J]. Journal of applied mathematics, 2013(4): 1-10.
[14] HEMMATI A, OTERKUS E, KHORASANCHI M.Vibration suppression of offshore wind turbine foundations using tuned liquid column dampers and tuned mass dampers[J]. Ocean engineering, 2019, 172: 286-295.
[15] COLWELL S, BASU B.Tuned liquid column dampers in offshore wind turbines for structural control[J]. Engineering structures, 2009, 31(2): 358-368.
[16] JONKMAN B J, JONKMAN J M.FAST v8.16.00 a-bjj[S]. USA: National Renewable Energy Labatory(NREL), 2016.
[17] LACKNER M A, ROTEA M A.Passive structural control of offshore wind turbines[J]. Wind energy, 2011, 14(3): 373-388.
[18] LACKNER M A, ROTEA M A.Structural control of floating wind turbines[J]. Mechatronics,2011, 21(4): 704-719.
[19] LA CAVA W, LACKNER M A.Theory manual for the tuned mass damper module in FAST v8[R]. University of Massachusetts Amherst: Amherst, MA, USA, 2015.
[20] JONKMAN J M.Dynamics modeling and loads analysis of an offshore floating wind turbine[D]. Colorado: University of Colorado at Boulder, 2007.
[21] IEC. Wind turbines, 2009. Part 3: design requirements for offshore wind turbines: IEC 61400-3 (ed. 1)[S]. International Electrotechnical Commission, 2009.
[22] JONKMAN B J, BUHL M L.TurbSim user’s guide[R]. National Renewable Energy Labatory (NREL), 2007.
[23] KAIMAL J C, WYNGAARD J C, IZUMI Y, et al.Spectral characteristics of surface-layer turbulence[J]. Quarterly Journal of the Royal Meteorological Society, 1972, 98(417): 563-589.
[24] DEN HARTOG J P. Mechanical vibrations[M]. New York: Dover, 1985: 121-134.
PDF(2796 KB)

Accesses

Citation

Detail

Sections
Recommended

/