HIGH-EFFICIENCY AND LOW-LOAD THREE-DIMENSIONAL WIND TURBINE BLADE SHAPE OPTIMIZATION DESIGN METHOD

Yao Yechen, Liu Zhaofang, Huang Diangui

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (1) : 257-264.

PDF(1676 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1676 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (1) : 257-264. DOI: 10.19912/j.0254-0096.tynxb.2021-0849

HIGH-EFFICIENCY AND LOW-LOAD THREE-DIMENSIONAL WIND TURBINE BLADE SHAPE OPTIMIZATION DESIGN METHOD

  • Yao Yechen, Liu Zhaofang, Huang Diangui
Author information +
History +

Abstract

The optimization design of conventional wind turbine blades starts from a two-dimensional airfoil, which always takes the maximum lift-drag ratio as the optimization goal. However, the maximum lift-drag ratio of a two-dimensional airfoil is fundamentally different from the high wind energy utilization rate and low aerodynamic load of the three-dimensional blade. The previous blade optimization methods often improves the utilization rate of wind energy and the aerodynamic load. In response to this problem, based on the multi-island genetic algorithm and the blade momentum element theory, this paper proposes that under a given wind condition, the objective function is to take the most weighted wind energy utilization rate and the least aerodynamic load as the objective function, the airfoil profile and the torsion angle as design variables to design and research the method of optimization with multiple objects on the three-dimensional long blade. The optimized design of an actual NREL Phase VI blade shows that compared with the original blade under a given wind condition, the optimized blade has a 3.1% increase in wind energy utilization and a 11.7% reduction in blade root bending moment. Under variable speed and variable wind conditions, the overall aerodynamic efficiency of the optimized blade is improved, and the blade root bending moment is significantly reduced.

Key words

wind turbine blades / airfoil optimization / genetic algorithm / wind energy utilization rate / blade root bending moment

Cite this article

Download Citations
Yao Yechen, Liu Zhaofang, Huang Diangui. HIGH-EFFICIENCY AND LOW-LOAD THREE-DIMENSIONAL WIND TURBINE BLADE SHAPE OPTIMIZATION DESIGN METHOD[J]. Acta Energiae Solaris Sinica. 2023, 44(1): 257-264 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0849

References

[1] 黎作武, 贺德馨. 风能工程中流体力学问题的研究现状与进展[J]. 力学进展, 2013, 43(5): 472-525.
LI Z W, HE D X.Reviews of fluid dynamics researches in wind energy engineering[J]. Advances in mechanics, 2013, 43(5): 472-525.
[2] 吴翔. 我国风力发电现状与技术发展趋势[J]. 中国战略新兴产业, 2017(44): 225.
WU X.The status quo and technological development trend of wind power generation in China[J]. China strategic emerging industry, 2017(44): 225.
[3] LU X Q, HUANG J, SONG L, et al.An improved geometric parameter airfoil parameterization method[J]. Aerospace science and technology, 2018, 78: 241-247.
[4] WEN H, SANG S, QIU C H, et al.A new optimization method of wind turbine airfoil performance based on Bessel equation and GABP artificial neural network[J]. Energy, 2019, 187: 116106.
[5] WU X J, ZHANG W W, PENG X H, et al.Benchmark aerodynamic shape optimization with the POD-based CST airfoil parametric method[J]. Aerospace science and technology, 2019, 84: 632-640.
[6] FATEHI M, AHMADABADI M, NEMATOLLAHI O, et al.Aerodynamic performance improvement of wind turbine blade by cavity shape optimization[J]. Renewable energy, 2019, 132(MAR.): 773-785.
[7] LI X X, YANG K, BAI J Y, et al.A new optimization approach to improve the overall performance of thick wind turbine airfoils[J]. Energy, 2016, 116(pt.1): 202-213.
[8] RAM K R, LAL S P, RAFIUDDIN A M.Design and optimization of airfoils and a 20 kW wind turbine using multi-objective genetic algorithm and HARP_Opt code[J]. Renewable energy, 2019, 144(DEC.): 56-67.
[9] 唐新姿, 李鹏程, 彭锐涛, 等. 湍流工况小型风力机翼型气动特性及稳健优化[J]. 机械工程学报, 2020, 56(2): 192-200.
TANG X Z, LI P C, PENG R T, et al.Aerodynamic characteristics and robust optimization of small wind turbine airfoil under turbulence condition[J]. Journal of mechanical engineering, 2020, 56(2): 192-200.
[10] 张旭, 李伟. 非对称钝尾缘厚度对风力机翼型气动性能的影响[J]. 中国电机工程学报, 2013, 33(14): 107-113, 1.
ZHANG X, LI W.Effect of asymmetric blunt trailing-edge thickness on aerodynamic performance of wind turbine airfoils[J]. Proceedings of the CSEE, 2013, 33(14): 107-113, 1.
[11] SALEEM A, KIM M H.Aerodynamic performance optimization of an airfoil-based airborne wind turbine using genetic algorithm[J]. Energy, 2020, 203: 117841.
[12] 陈刚, 陈进, 孙振业, 等. 基于静气弹性能的风力机翼型设计[J]. 太阳能学报, 2020, 41(6): 8-15.
CHEN G, CHEN J, SUN Z Y, et al.Airfoil design for wind turbines based on static-aeroelastic performance[J]. Acta energiae solaris sinica, 2020, 41(6): 8-15.
[13] 杨阳, 李春, 缪维跑, 等. 基于多目标遗传算法的风力机叶片全局优化设计[J]. 机械工程学报, 2015, 51(14): 192-198.
YANG Y, LI C, MIAO W P, et al.Global optimal design of wind turbines blade based on multi-object genetic algorithm[J]. Journal of mechanical engineering, 2015, 51(14): 192-198.
[14] 汪泉, 洪星, 杨建忠, 等. 低噪声风力机叶片气动外形优化设计[J]. 中国机械工程, 2018, 29(13): 1574-1579, 1587.
WANG Q, HONG X, YANG J Z, et al.Aerodynamic optimal design of low noise wind turbine blades[J]. China mechanical engineering, 2018, 29(13): 1574-1579, 1587.
[15] SIMMS D, SCHRECK S, HAND M, et al.NREL unsteady aerodynamics experiment in the NASA-Ames wind tunnel: a comparison of predictions to measurements[R]. Office of Scientific & Technical Information Technical Reports, 2001.
[16] DEB K.Multi-objective optimization using evolutionary algorithms[M]. Chichester: John Wiley & Sons, 2001.
[17] 陈进, 汪泉. 风力机翼型及叶片优化设计理论[M]. 北京: 科学出版社, 2013.
CHEN J, WANG Q.Wind turbine airfoil and blade optimization design theory[M]. Beijing: Science Press, 2013.
[18] 曲佳佳, 石可重, 张金波, 等. 风力机叶片气动载荷研究方法探究[J]. 工程热物理学报, 2017, 38(2): 246-252.
QU J J, SHI K Z, ZHANG J B, et al.Research on aerodynamic load calculation method of wind turbine blade[J]. Journal of engineering thermophysics, 2017, 38(2): 246-252.
[19] 李成良. 风机叶片结构分析与优化设计[D]. 武汉: 武汉理工大学, 2008.
LI C L.Structural analysis and optimum design of wind turbine rotor blade[D]. Wuhan: Wuhan University of Technology, 2008.
[20] 胡丹梅, 张志超, 孙凯, 等. 风力机叶片流固耦合计算分析[J]. 中国电机工程学报, 2013, 33(17): 98-104, 18.
HU D M, ZHANG Z C, SUN K, et al.Computational analysis of wind turbine blades based on fluid-structure interaction[J]. Proceedings of the CSEE, 2013, 33(17): 98-104, 18.
[21] 陈进, 陈刚, 谢翌. 考虑弯扭变形的风力机叶片结构优化[J]. 太阳能学报, 2018, 39(4): 1119-1126.
CHEN J, CHEN G, XIE Y.Structure optimization of wind turbine blade considering bend and twist deformation[J]. Acta energiae solaris sinica, 2018, 39(4): 1119-1126.
[22] 周姣. 大厚度风力机翼型气动特性及失速机理研究[D].北京: 中国科学院研究生院(工程热物理研究所), 2013.
ZHOU J.The investigation on aerodynamic characteristics of thick airfoil and the exploration of the airfoil stall mechanism for wind turbines[D]. Beijing: Graduate School of Chinese Academy of Sciences (Institute of Engineering Thermophysics), 2013.
[23] 张德虎, 席胜, 田鼎. 典型翼型参数化方法的翼型外形控制能力评估[J]. 航空工程进展, 2014, 5(3): 281-288, 295.
ZHANG D H, XI S, TIAN D.Geometry control ability evaluation of classical airfoil parametric methods[J]. Advances in aeronautical science and engineering, 2014, 5(3): 281-288, 295.
[24] YANG G D, RONCH A D, DROFELNIK J, et al.Sensitivity assessment of optimal solution in aerodynamic design optimization using SU2[J]. Aerospace science and technology, 2018, 78: 241-247.
[25] NANDAGOPAL R A, NARASIMALU S.Multi-objective optimization of hydrofoil geometry used in horizontal axis tidal turbine blade designed for operation in tropical conditions of South East Asia[J]. Renewable energy, 2020, 146: 166-180.
PDF(1676 KB)

Accesses

Citation

Detail

Sections
Recommended

/