RESEARCH ON METHOD OF ON-LINE MONITORING AND DAMAGE ASSESSMENT OF WIND TURBINE CONCRETE FOUNDATIONS WITH EMBEDDED RING

Lyu Weirong, Zhao Sitai, Yao Shuai, Fu Qiuyun, Jiang Haoyun, Qi Jingjing

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (1) : 265-272.

PDF(2132 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2132 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (1) : 265-272. DOI: 10.19912/j.0254-0096.tynxb.2021-0876

RESEARCH ON METHOD OF ON-LINE MONITORING AND DAMAGE ASSESSMENT OF WIND TURBINE CONCRETE FOUNDATIONS WITH EMBEDDED RING

  • Lyu Weirong1, Zhao Sitai1, Yao Shuai2, Fu Qiuyun2, Jiang Haoyun1, Qi Jingjing1
Author information +
History +

Abstract

According to the characteristics of wind turbine operation and the wind-induced fatigue damage of the embedded ring foundation, an online monitoring and damage assessment scheme of "upper and lower linkage, dynamic and static combination" is proposed. In other words, the installation position of the LVDT displacement sensor is determined based on the measurement results of the embedded ring levelness, and the displacement signals collected in real time are connected to the SCADA system of the wind turbine, which can realize synchronous acquisition, analysis and damage assessment with upper unit parameters. The field monitoring results show that the correlation coefficient between hub speed and embedded ring levelness is 0.8 or above under common working conditions such as start and stop, yaw, stable operation at high, medium and low speeds, which is extremely correlated. Therefore, it is feasible to regard the hubspeed as the "equivalent load on the foundation of the wind turbine. The fatigue damage degree of wind turbine foundation can be evaluated by drawing the curve of hub speed N-foundation ring displacement Δ and determining the curve parameters of critical hub speed, such as lower limit nd and upper limit nu and slope. By drawing the curveof the azimuth angle of wind turbine headθand the maximum level of the embedded ring Δmax, the distribution area and size of the concrete wear cavity around the lower flange can be determined, which provides a clear reinforcement position for the later foundation grouting.

Key words

embedded ring / wind turbine foundation / monitoring / hub speed / levelness

Cite this article

Download Citations
Lyu Weirong, Zhao Sitai, Yao Shuai, Fu Qiuyun, Jiang Haoyun, Qi Jingjing. RESEARCH ON METHOD OF ON-LINE MONITORING AND DAMAGE ASSESSMENT OF WIND TURBINE CONCRETE FOUNDATIONS WITH EMBEDDED RING[J]. Acta Energiae Solaris Sinica. 2023, 44(1): 265-272 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0876

References

[1] CURRIE M, QUAIL F.Development of a robust structural health monitoring system for wind turbine foundations[C]//ASME Turbo Expo 2012: Turbine Technical Conference & Exposition, New York, USA, 2012: 859-867.
[2] 马人乐, 黄冬平. 风电结构亚健康状态研究[J]. 特种结构, 2014, 31(4): 1-4.
MA R L, HUANG D P.Study on the sub-health of wind power structure[J]. Special structures, 2014, 31(4): 1-4.
[3] 康明虎, 徐慧, 黄鑫. 基础环形式风力机基础局部损伤分析[J]. 太阳能学报, 2014, 35(4): 583-588.
KANG M H, XU H, HUANG X.Local damage analysis of near foundation ring in wind turbine foundation[J]. Acta energiae solaris sinica, 2014, 35(4): 583-588.
[4] 吕伟荣, 何潇锟, 卢倍嵘, 等. 基础环式风力机基础疲劳损伤机理研究[J]. 建筑结构学报, 2018, 39(9): 140-148.
LYU W R, HE X K, LU B R, et al.Research on fatigue damage mechanism of wind turbine foundation of foundation pipe[J]. Journal of building structures, 2018, 39(9): 140-148.
[5] 吕伟荣, 刘锡军, 张家志, 等. 风机基础风致疲劳损伤机理、检测、设计与加固[M]. 北京: 中国建筑工业出版社, 2017.
LYU W R, LIU X J, ZHANG J Z, et al.Mechanism, detection, design and reinforcement of wind-induced fatigue damages in wind turbine foundation[M]. Beijing: China Architecture Publishinag & Media Co., Ltd, 2017.
[6] 蒋理论, 方占正, 吕伟荣. 坝上地区风电机组基础问题研究及防治措施探讨[J]. 河北电力技术, 2019, 38(3): 70-74.
JIANG L L, FANG Z Z, LYU W R.Study on problems and prevention measures of wind turbine foundation in Bashang area[J]. Hebei electric power, 2019, 38(3): 70-74.
[7] CURRIE M, SAAFI M, TACHTATZIS C, et al.Structural integrity monitoring of onshore wind turbine concrete foundations[J]. Renewable energy, 2015, 83: 1131-1138.
[8] MCALORUM J, PERRY M, FUSIEK G, et al.Deterioration of cracks in onshore wind turbine foundations[J]. Engineering structures, 2018, 167: 121-131.
[9] 白雪, 何敏娟, 马人乐, 等. 风力发电塔预埋塔筒基础健康监测. 太阳能学报, 2017, 38(7): 1979-1986.
BAI X, HE M J, MA R L, et al.Structural health monitoring of an onshore wind turbine foundation with inserted ring[J]. Acta energiae solaris einica, 2017, 38(7): 1979-1986.
[10] GB50231—2009, 机械设备安装工程施工及验收通用规范[S]. 北京: 中国计划出版社, 2009.
GB50231—2009, General code for construction and acceptance of mechanical equipment installation engineering[S]. Beijing: China Planning Press, 2009.
[11] GB/T20319—2017, 风力发电机组验收规范[S]. 2017.
GB/T20319—2017, Wind turbine generator systems-specification for acceptance[S]. 2017.
[12] GB50135—2019, 高耸结构设计标准[S], 2019.
GB50135—2019, Standard for design of high-rising structures[S]. 2019.
[13] 何春雄, 龙卫江, 朱锋峰. 概率论与数理统计[M]. 北京: 高等教育出版社, 2012.
HE C X, LONG W J, ZHU F F.Probability theory and mathematical statistics[M]. Beijing: Higher Education Press, 2012.
PDF(2132 KB)

Accesses

Citation

Detail

Sections
Recommended

/